

Microsoft® Excel®
Power Pivot &
Power Query

2nd Edition

by Michael Alexander

Microsoft® Excel® Power Pivot & Power Query For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be used without written
permission. Microsoft and Excel are registered trademarks of Microsoft Corporation in the United States and other
countries. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2022930084

ISBN 978-1-119-84448-8 (pbk); ISBN 978-1-119-84449-5 (ebk); ISBN 978-1-119-84450-1 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction. . 1

Part 1: Supercharged Reporting with Power Pivot 5
CHAPTER 1:	 Thinking Like a Database. . 7
CHAPTER 2:	 Introducing Power Pivot . . 17
CHAPTER 3:	 The Pivotal Pivot Table. . 29
CHAPTER 4:	 Using External Data with Power Pivot. . 63
CHAPTER 5:	 Working Directly with the Internal Data Model. . 89
CHAPTER 6:	 Adding Formulas to Power Pivot. . 103
CHAPTER 7:	 Diving into DAX. . 121

Part 2: Wrangling Data with Power Query. 141
CHAPTER 8:	 Introducing Power Query . . 143
CHAPTER 9:	 Power Query Connection Types. . 159
CHAPTER 10:	Transforming Your Way to Better Data. . 175
CHAPTER 11:	Making Queries Work Together. . 207
CHAPTER 12:	Extending Power Query with Custom Functions. 225

Part 3: The Part of Tens. . 243
CHAPTER 13:	Ten Ways to Improve Power Pivot Performance. 245
CHAPTER 14:	Ten Tips for Working with Power Query. . 253

Index. . 263

Microsoft® Excel® Power Pivot & Power Query

Table of Contents v

Table of Contents
INTRODUCTION . . 1

About This Book. . 2
Foolish Assumptions. . 3
Icons Used in This Book. . 3
Beyond the Book. . 4
Where to Go from Here. . 4

PART 1: SUPERCHARGED REPORTING WITH
POWER PIVOT. . 5

CHAPTER 1:	 Thinking Like a Database . . 7
Exploring the Limits of Excel and How Databases Help 7

Scalability . . 8
Transparency of analytical processes. . 9
Separation of data and presentation. . 10

Getting to Know Database Terminology . . 11
Databases. . 11
Tables . . 11
Records, fields, and values. . 12
Queries. . 13

Understanding Relationships . . 13

CHAPTER 2:	 Introducing Power Pivot . . 17
Understanding the Power Pivot Internal Data Model 18
Linking Excel Tables to Power Pivot. . 20

Preparing Excel tables. . 21
Adding Excel Tables to the data model . . 22
Creating relationships between Power Pivot tables. 24
Managing existing relationships. . 26
Using the Power Pivot data model in reporting 27

CHAPTER 3:	 The Pivotal Pivot Table . . 29
Introducing the Pivot Table. . 30
Defining the Four Areas of a Pivot Table. . 30

Values area. . 30
Row area. . 31
Column area. . 31
Filter area. . 32

Creating Your First Pivot Table . . 33
Changing and rearranging a pivot table. . 36
Adding a report filter. . 37
Keeping the pivot table fresh. . 38

vi Microsoft Excel Power Pivot & Power Query For Dummies

Customizing Pivot Table Reports . . 40
Changing the pivot table layout. .40
Customizing field names . . 41
Applying numeric formats to data fields. . 42
Changing summary calculations. . 43
Suppressing subtotals . . 44
Showing and hiding data items. . 47
Hiding or showing items without data. . 49
Sorting the pivot table . . 51

Understanding Slicers. . 52
Creating a Standard Slicer. . 54
Getting Fancy with Slicer Customizations . . 56

Size and placement. . 56
Data item columns . . 57
Miscellaneous slicer settings. . 58

Controlling Multiple Pivot Tables with One Slicer. 58
Creating a Timeline Slicer. . 59

CHAPTER 4:	 Using External Data with Power Pivot. 63
Loading Data from Relational Databases . . 64

Loading data from SQL Server. . 64
Loading data from Microsoft Access databases. 70
Loading data from other relational database systems. 72

Loading Data from Flat Files . . 75
Loading data from external Excel files. . 76
Loading data from text files. . 78
Loading data from the Clipboard . . 81

Loading Data from Other Data Sources. . 82
Refreshing and Managing External Data Connections 83

Manually refreshing Power Pivot data. . 83
Setting up automatic refreshing. . 84
Preventing Refresh All. . 85
Editing the data connection. . 86

CHAPTER 5:	 Working Directly with the Internal Data Model. 89
Directly Feeding the Internal Data Model . . 89
Managing Relationships in the Internal Data Model 95
Managing Queries and Connections . . 96
Creating a New Pivot Table Using the Internal Data Model 97
Filling the Internal Data Model with Multiple External Data Tables. . . 98

CHAPTER 6:	 Adding Formulas to Power Pivot. . 103
Enhancing Power Pivot Data with Calculated Columns. 103

Creating your first calculated column . . 104
Formatting calculated columns. . 105

Table of Contents vii

Referencing calculated columns in other calculations. 106
Hiding calculated columns from end users. 107

Utilizing DAX to Create Calculated Columns. . 108
Identifying DAX functions that are safe for calculated
columns. .108
Building DAX-driven calculated columns. . 110
Month sorting in Power Pivot–driven pivot tables. 112
Referencing fields from other tables . . 113
Nesting functions. . 115

Understanding Calculated Measures. . 116
Creating a calculated measure . . 116
Editing and deleting calculated measures. 118

Free Your Data with Cube Functions . . 119

CHAPTER 7:	 Diving into DAX . . 121
DAX Language Fundamentals. . 121

Using DAX operators. . 125
Applying conditional logic in DAX. . 126
Working with DAX aggregate functions. . 128
Exploring iterator functions and row context. 129

Understanding Filter Context . . 133
Getting context transitions with the CALCULATE function. 135
Adding flexibility with the FILTER function. 137

PART 2: WRANGLING DATA WITH POWER QUERY. 141

CHAPTER 8:	 Introducing Power Query. . 143
Power Query Basics . . 144

Starting the query. . 144
Understanding query steps. . 150
Refreshing Power Query data. . 152
Managing existing queries. . 153

Understanding Column-Level Actions. . 155
Understanding Table Actions . . 157

CHAPTER 9:	 Power Query Connection Types. . 159
Importing Data from Files . . 160

Getting data from Excel workbooks. . 160
Getting data from CSV and text files. . 161
Getting data from PDF files . . 163
Getting data from folders. . 164

Importing Data from Database Systems. . 165
A connection for every database type. . 165
Getting data from other data systems. . 167
Walk-through: Getting data from a database. 168

viii Microsoft Excel Power Pivot & Power Query For Dummies

Managing Data Source Settings . . 170
Data Profiling with Power Query. . 171

Data Profiling options. . 172
Data Profiling quick actions. . 173

CHAPTER 10:	Transforming Your Way to Better Data 175
Completing Common Transformation Tasks 176

Removing duplicate records . . 176
Filling in blank fields . . 178
Concatenating columns. . 179
Changing case . . 181
Finding and replacing specific text. . 181
Trimming and cleaning text. . 183
Extracting the left, right, and middle values 184
Splitting columns using character markers. 187
Pivoting and unpivoting fields. . 189

Creating Custom Columns. . 193
Concatenating with a custom column. . 195
Understanding data type conversions. . 196
Spicing up custom columns with functions. 197
Adding conditional logic to custom columns 199

Grouping and Aggregating Data. . 201
Working with Custom Data Types. . 203

CHAPTER 11:	Making Queries Work Together. . 207
Reusing Query Steps. . 208
Understanding the Append Feature. . 211

Creating the needed base queries. . 212
Appending the data. . 213

Understanding the Merge Feature. . 216
Understanding Power Query joins. . 216
Merging queries. . 217

Understanding Fuzzy Match . . 221

CHAPTER 12:	Extending Power Query with Custom
Functions. . 225
Creating and Using a Basic Custom Function. 225
Creating a Function to Merge Data from Multiple Excel Files. 229
Creating Parameter Queries . . 236

Preparing for a parameter query . . 236
Creating the base query. . 238
Creating the parameter query. . 239

Table of Contents ix

PART 3: THE PART OF TENS. . 243

CHAPTER 13:	Ten Ways to Improve Power Pivot
Performance. . 245
Limit the Number of Rows and Columns in Your
Data Model Tables. . 246
Use Views Instead of Tables. . 246
Avoid Multi-Level Relationships. .246
Let the Back-End Database Servers Do the Crunching 247
Beware of Columns with Many Unique Values. 248
Limit the Number of Slicers in a Report. . 248
Create Slicers Only on Dimension Fields. . 249
Disable the Cross-Filter Behavior for Certain Slicers. 250
Use Calculated Measures Instead of Calculated Columns 250
Upgrade to 64-Bit Excel . . 251

CHAPTER 14:	Ten Tips for Working with Power Query. 253
Getting Quick Information from the Queries &
Connections Pane. . 253
Organizing Queries in Groups. . 254
Selecting Columns in Queries Faster. . 255
Renaming Query Steps. . 256
Quickly Creating Reference Tables. . 257
Viewing Query Dependencies. . 258
Setting a Default Load Behavior. . 259
Preventing Automatic Data Type Changes . . 259
Disabling Privacy Settings to Improve Performance 261
Disabling Relationship Detection . . 261

INDEX. . 263

Introduction 1

Introduction

Over the past few years, the concept of self-service business intelligence
(BI) has taken over the corporate world. Self-service BI is a form of busi-
ness intelligence in which end users can independently generate their

own reports, run their own queries, and conduct their own analyses, without the
need to engage the IT department.

The demand for self-service BI is a direct result of several factors:

»» More power users: Organizations are realizing that no single enterprise
reporting system or BI tool can accommodate all their users. Predefined
reports and high-level dashboards may be sufficient for casual users, but a
large portion of today’s users are savvy enough to be considered power users.
Power users have a greater understanding of data analysis and prefer to
perform their own analysis, often within Excel.

»» Changing analytical needs: In the past, business intelligence primarily consisted
of IT-managed dashboards showing historic data on an agreed-upon set of key
performance metrics. Managers now demand more dynamic predictive analysis,
the ability to perform data discovery iteratively, and the freedom to take the hard
left and right turns on data presentation. These managers often turn to Excel to
provide the needed analytics and visualization tools.

»» Speed of BI: Users are increasingly dissatisfied with the inability of IT to
quickly deliver new reporting and metrics. Most traditional BI implementa-
tions fail specifically because the need for changes and answers to new
questions overwhelmingly outpaces the IT department’s ability to deliver
them. As a result, users often find ways to work around the perceived IT
bottleneck and ultimately build their own shadow BI (under the radar)
solutions in Excel.

Recognizing the importance of the self-service BI revolution and the role Excel
plays in it, Microsoft has made substantial investments in making Excel a player
in the self-service BI arena by embedding both Power Pivot and Power Query
directly into Excel.

2 Microsoft Excel Power Pivot & Power Query For Dummies

You can integrate multiple data sources, define relationships between data
sources, process analysis services cubes, and develop interactive dashboards that
can be shared on the web. Indeed, the new Microsoft BI tools blur the line between
Excel analysis and what is traditionally IT enterprise-level data management and
reporting capabilities.

With these new tools in the Excel wheelhouse, it’s becoming important for busi-
ness analysts to expand their skill sets to new territory, including database man-
agement, query design, data integration, multidimensional reporting, and a host
of other skills. Excel analysts have to expand their skill set knowledge base from
the one-dimensional spreadsheets to relational databases, data integration, and
multidimensional reporting.

That’s where this book comes in. Here, you’re introduced to the mysterious world
of Power Pivot and Power Query. You find out how to leverage the rich set of tools
and reporting capabilities to save time, automate data clean-up, and substantially
enhance your data analysis and reporting capabilities.

About This Book
The goal of this book is to give you a solid overview of the self-service BI func-
tionality offered by Power Pivot and Power Query. Each chapter guides you through
practical techniques that enable you to

»» Extract data from databases and external files for use in Excel reporting

»» Scrape and import data from the web

»» Build automated processes to clean and transform data

»» Easily slice data into various views on the fly, gaining visibility from different
perspectives

»» Analyze large amounts of data and report them in a meaningful way

»» Create powerful, interactive reporting mechanisms and dashboards

Within this book, you may note that some web addresses break across two lines of
text. If you’re reading this book in print and want to visit one of these web pages,
simply key in the web address exactly as it’s noted in the text, pretending as
though the line break doesn’t exist. If you’re reading this as an e-book, you’ve got
it easy — just click the web address to be taken directly to the web page.

Introduction 3

Foolish Assumptions
Over the past few years, Microsoft has adopted an agile release cycle, allowing the
company to release updates to Microsoft Office and the power BI tools practically
monthly. This is great news for those who love seeing new features added to
Power Pivot and Power Query. (It’s not-so-great news if you’re trying to docu-
ment the features of these tools in a book.)

My assumption is that Microsoft will continue to add new bells and whistles to
Power Pivot and Power Query at a rapid pace after publication of this book. So you
may encounter new functionality not covered here.

The good news is that both Power Pivot and Power Query have stabilized and
already have a broad feature set. So I’m also assuming that although changes will
be made to these tools, they won’t be so drastic as to turn this book into a door-
stop. The core functionality covered in these chapters will remain relevant — even
if the mechanics change a bit.

Icons Used in This Book
As you look in various places in this book, you see icons in the margins that indi-
cate material of interest (or not, as the case may be). This section briefly describes
each icon in this book.

Tips are beneficial because they help you save time or perform a task without hav-
ing to do a lot of extra work. The tips in this book are time-saving techniques or
pointers to resources that you should check out to get the maximum benefit from
Excel.

Try to avoid doing anything marked with a Warning icon, which (as you might
expect) represents a danger of one sort or another.

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a program running. Skip these bits of information when-
ever you like.

4 Microsoft Excel Power Pivot & Power Query For Dummies

If you get nothing else out of a particular chapter or section, remember the mate-
rial marked by this icon. This text usually contains an essential process or a bit of
information you ought to remember.

Paragraphs marked with this icon reference the sample files for the book.

Beyond the Book
In addition to the book you have in your hands, you can access some extra content
online. Check out the free Cheat Sheet for lists of Power Query text functions and
Power Query date functions that are good to know. Just go to www.dummies.com
and type Excel Power Pivot & Power Query For Dummies Cheat Sheet in the
Search box.

If you want to follow along with the examples in this book, you can download the
sample files at www.dummies.com/go/excelpowerpivotpowerqueryfd2e. The
files are organized by chapter.

Where to Go from Here
It’s time to start your self-service BI adventure! If you’re primarily interested in
Power Pivot, start with Chapter 1. If you want to dive right into Power Query, jump
to Part 2, which begins at Chapter 8.

http://www.dummies.com/
http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

1Supercharged
Reporting with
Power Pivot

IN THIS PART . . .

Think about data like a relational database.

Create your own Power Pivot data model.

Explore the workings of pivot tables.

Use external data with Power Pivot.

Manage the Power Pivot internal data model.

Create your own formulas in Power Pivot.

Delve deeper into the DAX formula language.

CHAPTER 1 Thinking Like a Database 7

Chapter 1
Thinking Like a Database

With the introduction of business intelligence (BI) tools such as Power
Pivot and Power Query, it’s becoming increasingly important for Excel
analysts to understand core database principles. Unlike traditional

Excel concepts, where the approach to developing solutions is relatively intuitive,
you need to have a basic understanding of database terminology and architecture
in order to get the most benefit from Power Pivot and Power Query. This chapter
introduces you to a handful of fundamental concepts that you should know before
taking on the rest of this book.

Exploring the Limits of Excel
and How Databases Help

Years of consulting experience have brought this humble author face to face with
managers, accountants, and analysts who all have had to accept this simple fact:
Their analytical needs had outgrown Excel. They all faced fundamental challenges
that stemmed from one or more of Excel’s three problem areas: scalability, trans-
parency of analytical processes, and separation of data and presentation.

IN THIS CHAPTER

»» Examining traditional Excel
limitations

»» Keeping up with database
terminology

»» Looking into relationships

8 PART 1 Supercharged Reporting with Power Pivot

Scalability
Scalability is the ability of an application to develop flexibly to meet growth and
complexity requirements. In the context of this chapter, scalability refers to
Excel’s ability to handle ever-increasing volumes of data.

Imagine that you’re working in a small company and using Excel to analyze its
daily transactions. As time goes on, you build a robust process complete with all
the formulas, pivot tables, and macros you need in order to analyze the data that
is stored in your neatly maintained worksheet.

As the amount of data grows, you will first notice performance issues. The spread-
sheet will become slow to load and then slow to calculate. Why does this happen?
It has to do with the way Excel handles memory. When an Excel file is loaded, the
entire file is loaded into RAM. Excel does this to allow for quick data processing
and access. The drawback to this behavior is that every time the data in your
spreadsheet changes, Excel has to reload the entire document into RAM. The net
result in a large spreadsheet is that it takes a great deal of RAM to process even the
smallest change. Eventually, every action you take in the gigantic worksheet is
preceded by an excruciating wait.

Your pivot tables will require bigger pivot caches, almost doubling the Excel work-
book’s file size. Eventually, the workbook will become too big to distribute easily.
You may even consider breaking down the workbook into smaller workbooks
(possibly one for each region). This causes you to duplicate your work.

In time, you may eventually reach the 1,048,576-row limit of the worksheet. What
happens then? Do you start a new worksheet? How do you analyze two datasets on
two different worksheets as one entity? Are your formulas still good? Will you
have to write new macros?

These are all issues that need to be addressed.

Of course, you will also encounter the Excel power customers, who will find vari-
ous clever ways to work around these limitations. In the end, though, these meth-
ods will always be simply workarounds. Eventually, even these power customers
will begin to think less about the most effective way to perform and present anal-
ysis of their data and more about how to make data “fit” into Excel without break-
ing their formulas and functions. Excel is flexible enough that a proficient
customer can make most things fit just fine. However, when customers think only
in terms of Excel, they’re undoubtedly limiting themselves, albeit in an incredibly
functional way.

In addition, these capacity limitations often force Excel customers to have the
data prepared for them. That is, someone else extracts large chunks of data from

CHAPTER 1 Thinking Like a Database 9

a large database and then aggregates and shapes the data for use in Excel. Should
the serious analyst always be dependent on someone else for their data needs?
What if an analyst could be given the tools to access vast quantities of data without
being reliant on others to provide data? Could that analyst be more valuable to the
organization? Could that analyst focus on the accuracy of the analysis and the
quality of the presentation instead of routine Excel data maintenance?

A relational database system (such as Access or SQL Server) is a logical next step
for the analyst who faces an ever-increasing data pool. Database systems don’t
usually have performance implications with large amounts of stored data, and are
built to address large volumes of data. An analyst can then handle larger datasets
without requiring the data to be summarized or prepared to fit into Excel. Also, if
a process ever becomes more crucial to the organization and needs to be tracked
in a more enterprise-acceptable environment, it will be easier to upgrade and
scale up if that process is already in a relational database system.

Transparency of analytical processes
One of Excel’s most attractive features is its flexibility. Each individual cell can
contain text, a number, a formula, or practically anything else the customer
defines. Indeed, this is one of the fundamental reasons that Excel is an effective
tool for data analysis. Customers can use named ranges, formulas, and macros to
create an intricate system of interlocking calculations, linked cells, and formatted
summaries that work together to create a final analysis.

So what is the problem? The problem is that there is no transparency of analytical
processes. It is extremely difficult to determine what is actually going on in a
spreadsheet. Anyone who has had to work with a spreadsheet created by someone
else knows all too well the frustration that comes with deciphering the various
gyrations of calculations and links being used to perform analysis. Small spread-
sheets that are performing modest analysis are painful to decipher, and large,
elaborate, multi-worksheet workbooks are virtually impossible to decode, often
leaving you to start from scratch.

Compared to Excel, database systems might seem rigid, strict, and unwavering in
their rules. However, all this rigidity comes with a benefit.

Because only certain actions are allowable, you can more easily come to under-
stand what is being done within structured database objects such as queries or
stored procedures. If a dataset is being edited, a number is being calculated, or any
portion of the dataset is being affected as part of an analytical process, you can
readily see that action by reviewing the query syntax or the stored procedure code.
Indeed, in a relational database system, you never encounter hidden formulas,
hidden cells, or dead named ranges.

10 PART 1 Supercharged Reporting with Power Pivot

Separation of data and presentation
Data should be separate from presentation; you don’t want the data to become too
tied into any particular way of presenting it. For example, when you receive an
invoice from a company, you don’t assume that the financial data on that invoice
is the true source of your data. It is a presentation of your data. It can be presented
to you in other manners and styles on charts or on websites, but such representa-
tions are never the actual source of the data.

What exactly does this concept have to do with Excel? People who perform data
analysis with Excel tend, more often than not, to fuse the data, the analysis, and
the presentation. For example, you often see an Excel workbook that has 12 work-
sheets, each representing a month. On each worksheet, data for that month is
listed along with formulas, pivot tables, and summaries. What happens when
you’re asked to provide a summary by quarter? Do you add more formulas and
worksheets to consolidate the data on each of the month worksheets? The funda-
mental problem in this scenario is that the worksheets actually represent data
values that are fused into the presentation of the analysis.

The point being made here is that data should not be tied to a particular presen-
tation, no matter how apparently logical or useful it may be. However, in Excel, it
happens all the time.

In addition, as discussed earlier in this chapter, because all manners and phases
of analysis can be done directly within a spreadsheet, Excel cannot effectively
provide adequate transparency to the analysis. Each cell has the potential to hold
formulas, be hidden, and contain links to other cells. In Excel, this blurs the line
between analysis and data, which makes it difficult to determine exactly what is
going on in a spreadsheet. Moreover, it takes a great deal of effort in the way of
manual maintenance to ensure that edits and unforeseen changes don’t affect
previous analyses.

Relational database systems inherently separate analytical components into
tables, queries, and reports. By separating these elements, databases make data
less sensitive to changes and create a data analysis environment in which you can
easily respond to new requests for analysis without destroying previous analyses.

You may find that you manipulate Excel’s functionalities to approximate this
database behavior. If so, you must consider that if you’re using Excel’s function-
ality to make it behave like a database application, perhaps the real thing just
might have something to offer. Utilizing databases for data storage and analytical
needs would enhance overall data analysis and would allow Excel power custom-
ers to focus on the presentation in their spreadsheets.

CHAPTER 1 Thinking Like a Database 11

In these days of big data, customers demand more, not less, complex data analy-
sis. Excel analysts will need to add tools to their repertoires to avoid being simply
“spreadsheet mechanics.” Excel can be stretched to do just about anything, but
maintaining such creative solutions can be a tedious manual task. You can be sure
that the sexy aspect of data analysis does not lie in the routine data management
within Excel; rather, it lies in leveraging BI Tools such as providing clients with
the best solution for any situation.

Getting to Know Database Terminology
The terms database, table, record, field, and value indicate a hierarchy from largest
to smallest. These same terms are used with virtually all database systems, so you
should learn them well.

Databases
Generally, the word database is a computer term for a collection of information
concerning a certain topic or business application. A database helps you organize
this related information in a logical fashion for easy access and retrieval. Certain
older database systems used the term database to describe individual tables. The
current use of database applies to all elements of a database system.

Databases aren’t only for computers. Manual databases are sometimes referred to
as manual filing systems or manual database systems. These filing systems usually
consist of people, papers, folders, and filing cabinets — paper is the key to a man-
ual database system. In a real-life manual database system, you probably have in-
baskets and out-baskets and some type of formal filing method. You access
information manually by opening a file cabinet, removing a file folder, and finding
the correct piece of paper. Customers fill out paper forms for input, perhaps by
using a keyboard to input information that is printed on forms. You find informa-
tion by manually sorting the papers or by copying information from many papers
to another piece of paper (or even into an Excel spreadsheet). You may use a spread-
sheet or calculator to analyze the data or display it in new and interesting ways.

Tables
A database stores information in a carefully defined structure known as a table.
A table is just a container for raw information (called data), similar to a folder in a
manual filing system. Each table in a database contains information about a single

12 PART 1 Supercharged Reporting with Power Pivot

entity, such as a person or product, and the data in the table is organized into rows
and columns. A relational database system stores data in related tables. For exam-
ple, a table containing employee data (names and addresses) may be related to a
table containing payroll information (pay date, pay amount, and check number).

To use database wording, a table is an object. As you design and work with data-
bases, it’s important to see each table as a unique entity and to see how each table
relates to the other objects in the database.

In most database systems, you can view the contents of a table in a spreadsheet-
like form called a datasheet, composed of rows and columns (known as records and
fields, respectively — see the following section). Although a datasheet and a
spreadsheet are superficially similar, a datasheet is quite a different type of object.
You typically cannot make changes or add calculations directly within a table.
Your interaction with tables will primarily come in the form of queries or views —
see the later section “Queries”.

Records, fields, and values
A database table is divided into rows (called records) and columns (called fields),
with the first row (the heading on top of each column) containing the names of
the fields in the database.

Each row is a single record containing fields that are related to that record. In a
manual system, the rows are individual forms (sheets of paper), and the fields are
equivalent to the blank areas on a printed form that you fill in.

Each column is a field that includes many properties specifying the type of data
contained within the field and how the database should handle the field’s data.
These properties include the name of the field (Company) and the type of data in
the field (Text). A field may include other properties as well. For example, the
Address field’s Size property tells the database the maximum number of charac-
ters allowed for the address.

At the intersection of a record and a field is a value — the actual data element. For
example, in a field named Company, a company name entered into that field
would represent one data value.

When working with Microsoft Access, the term field is used to refer to an attribute
stored in a record. In many other database systems, including SQL Server, column
is the expression you hear most often in place of field — field and column mean
the same thing. The exact terminology that’s used relies somewhat on the context
of the database system underlying the table containing the record.

CHAPTER 1 Thinking Like a Database 13

Queries
Most relational database systems allow the creation of queries (sometimes called
views). A query extracts information from the tables in the database; a query
selects and defines a group of records that fulfill a certain condition. Most data-
base outputs are based on queries that combine, filter, or sort data before it’s
displayed. Queries are often called from other database objects, such as stored
procedures, macros, or code modules. In addition to extracting data from tables,
queries can be used to change, add, or delete database records.

An example of a query is when a person at the sales office tells the database,
“Show me all customers, in alphabetical order by name, who are located in Mas-
sachusetts and who made a purchase over the past six months.” Or “Show me all
customers who bought Chevrolet car models within the past six months, and dis-
play them sorted by customer name and then by sale date.”

Rather than ask the question using English words, a person uses a special syntax,
such as Structured Query Language (or SQL), to communicate to the database
what the query will need to do.

Understanding Relationships
After you understand the basic terminology of databases, it’s time to focus on one
of their more useful features: A relationship is the mechanism by which separate
tables are related to each other. You can think of a relationship as a kind of
VLOOKUP, in which you relate the data in one data range to the data in another
data range using an index or a unique identifier. In databases, relationships do the
same thing, but without the hassle of writing formulas.

Relationships are important because most of the data you work with fits into a
multidimensional hierarchy of sorts. For example, you may have a table showing
customers who buy products. These customers require invoices that have invoice
numbers. Those invoices have multiple lines of transactions listing what they
bought. A hierarchy exists there.

Now, in the one-dimensional spreadsheet world, this data typically would be
stored in a flat table, like the one shown in Figure 1-1.

Because customers have more than one invoice, the customer information (in this
example, CustomerID and CustomerName) has to be repeated. This causes a prob-
lem when that data needs to be updated.

14 PART 1 Supercharged Reporting with Power Pivot

For example, imagine that the name of the company Aaron Fitz Electrical changes
to Fitz and Sons Electrical. Looking at Figure 1-1, you see that multiple rows
contain the old name. You would have to ensure that every row containing the old
company name is updated to reflect the change. Any rows you miss will not cor-
rectly map back to the right customer.

Wouldn’t it be more logical and efficient to record the name and information of
the customer only one time? Then, rather than have to write the same customer
information repeatedly, you could simply have some form of customer reference
number.

This is the idea behind relationships. You can separate customers from invoices,
placing each in their own tables. Then you can use a unique identifier (such as
CustomerID) to relate them together.

Figure 1-2 illustrates how this data would look in a relational database. The data
would be split into three separate tables: Customers, InvoiceHeader, and Invoice-
Details. Each table would then be related using unique identifiers (CustomerID
and InvoiceNumber, in this case).

FIGURE 1-1:
Data is stored

in an Excel
spreadsheet

using a flat-table
format.

FIGURE 1-2:
Databases use

relationships to
store data in

unique tables and
simply relate

these tables to
each other.

CHAPTER 1 Thinking Like a Database 15

The Customers table would contain a unique record for each customer. That way,
if you need to change a customer’s name, you would need to make the change in
only that record. Of course, in real life, the Customers table would include other
attributes, such as customer address, customer phone number, and customer start
date. Any of these other attributes could also be easily stored and managed in the
Customers table.

The most common relationship type is a one-to-many relationship. That is, for
each record in one table, one record can be matched to many records in a separate
table. For example, an invoice header table is related to an invoice detail table. The
invoice header table has a unique identifier: Invoice Number. The invoice detail
will use the Invoice Number for every record representing a detail of that partic-
ular invoice.

Another kind of relationship type is the one-to-one relationship: For each record
in one table, one and only one matching record is in a different table. Data from
different tables in a one-to-one relationship can technically be combined into a
single table.

Finally, in a many-to-many relationship, records in both tables can have any
number of matching records in the other table. For instance, a database at a bank
may have a table of the various types of loans (home loan, car loan, and so on) and
a table of customers. A customer can have many types of loans. Meanwhile, each
type of loan can be granted to many customers.

If your head is spinning from all this database talk, don’t worry. You don’t need to
be an expert database modeler to use Power Pivot. But it’s important to under-
stand these concepts. The better you understand how data is stored and managed
in databases, the more effectively you’ll leverage Power Pivot for reporting.

CHAPTER 2 Introducing Power Pivot 17

Chapter 2
Introducing Power Pivot

Over the past decade or so, corporate managers, eager to turn impossible
amounts of data into useful information, drove the business intelligence
(BI) industry to innovate new ways of synthesizing data into meaningful

insights. During this period, organizations spent lots of time and money imple-
menting big enterprise reporting systems to help keep up with the hunger for data
analytics and dashboards.

Recognizing the importance of the BI revolution and the place that Excel holds
within it, Microsoft proceeded to make substantial investments in improving
Excel’s BI capabilities. It specifically focused on Excel’s self-service BI capabilities
and its ability to better manage and analyze information from the increasing
number of available data sources.

The key product of that endeavor was essentially Power Pivot (introduced in Excel
2010 as an add-in). With Power Pivot came the ability to set up relationships
between large, disparate data sources. For the first time, Excel analysts were able
to add a relational view to their reporting without the use of problematic functions
such as VLOOKUPS. The ability to merge data sources with hundreds of thousands
of rows into one analytical engine within Excel was groundbreaking.

With the release of Excel 2016, Microsoft incorporated Power Pivot directly into
Excel. The powerful capabilities of Power Pivot are available out of the box!

In this chapter, you get an overview of those capabilities by exploring the key
features, benefits, and capabilities of Power Pivot.

IN THIS CHAPTER

»» Getting to know the Internal Data
Model

»» Activating the Power Pivot add-in

»» Linking to Excel data

»» Managing relationships

18 PART 1 Supercharged Reporting with Power Pivot

Understanding the Power Pivot
Internal Data Model

At its core, Power Pivot is essentially a SQL Server Analysis Services engine made
available by way of an in-memory process that runs directly within Excel. Its
technical name is the xVelocity analytics engine. However, in Excel, it’s referred
to as the Internal Data Model.

Every Excel workbook contains an Internal Data Model, a single instance of the
Power Pivot in-memory engine. The most effective way to interact with the Inter-
nal Data Model is to use the Power Pivot Ribbon interface (see Figure 2-1).

The Power Pivot Ribbon interface exposes the full set of functionalities you don’t
get with the standard Excel Data tab. Here are a few examples of functionality
available with the Power Pivot interface:

»» You can browse, edit, filter, and apply custom sorting to data.

»» You can create custom calculated columns that apply to all rows in the data
import.

»» You can define a default number format to use when the field appears in a
pivot table.

»» You can easily configure relationships via the handy Graphical Diagram view.

»» You can choose to prevent certain fields from appearing in the PivotTable
Field List.

As with everything else in Excel, the Internal Data Model does have limitations.
Most Excel users will not likely hit these limitations, because Power Pivot’s com-
pression algorithm is typically able to shrink imported data to about one-tenth its
original size. For example, a 100MB text file would take up only approximately
10MB in the Internal Data Model.

Nevertheless, it’s important to understand the maximum and configurable limits
for Power Pivot Data Models. Table 2-1 highlights them.

FIGURE 2-1:
The Power Pivot

Ribbon interface.

CHAPTER 2 Introducing Power Pivot 19

WHERE’S THE POWER PIVOT TAB?
Organizations often install Excel in accordance with their own installation policies. In
some organizations, Excel is installed without the PowerPivot add-in activated, so the
Power Pivot tab won’t be visible. If you don’t see the Power Pivot tab shown in Figure 2-1,
you can follow these steps to activate it:

1.	 Go up to the Excel Ribbon and choose File ➪ Options.

2.	 Select the Add-Ins option on the left.

3.	 From the Manage drop-down list, select COM Add-Ins and click Go.

4.	 In the list of available COM Add-Ins, check the box next to Microsoft Office
Power Pivot for Excel and click OK.

5.	 If the Power Pivot tab doesn’t appear on the Ribbon, quit and restart Excel.

TABLE 2-1	 Limitations of the Internal Data Model
Object Specification

Data model size In 32-bit environments, Excel workbooks are subject to a 2GB limit. This
includes the in-memory space shared by Excel, the Internal Data Model,
and add-ins that run in the same process.

In 64-bit environments, there are no hard limits on file size. Workbook size
is limited only by available memory and system resources.

Number of tables in the data
model

No hard limits exist on the count of tables. However, all tables in the data
model cannot exceed 2,147,483,647 bytes.

Number of rows in each table
in the data model

1,999,999,997

Number of columns and calcu-
lated columns in each table in
the data model

The number cannot exceed 2,147,483,647 bytes.

Number of distinct values in a
column

1,999,999,997

Characters in a column name 100 characters

String length in each field It’s limited to 536,870,912 bytes (512MB), equivalent to 268,435,456
Unicode characters (256 mega-characters).

20 PART 1 Supercharged Reporting with Power Pivot

Linking Excel Tables to Power Pivot
The first step in using Power Pivot is to fill it with data. You can either import
data from external data sources or link to Excel tables in your current workbook.
I cover importing data from external data sources in Chapter 4. For now, let me
start this walkthrough by showing you how to link three Excel tables to Power
Pivot.

You can find the sample file for this chapter on this book’s companion website at
www.dummies.com/go/excelpowerpivotpowerqueryfd2e in the workbook named
Chapter 2 Samples.xlsx.

In this scenario, you have three data sets in three different worksheets: Custom-
ers, InvoiceHeader, and InvoiceDetails (see Figure 2-2).

The Customers data set contains basic information, such as CustomerID, Cus-
tomer Name, and Address. The InvoiceHeader data set contains data that points
specific invoices to specific customers. The InvoiceDetails data set contains the
specifics of each invoice.

To analyze revenue by customer and month, it’s clear that you first need to some-
how join these three tables together. In the past, you would have to go through a
series of gyrations involving VLOOKUP or other clever formulas. But with Power
Pivot, you can build these relationships in just a few clicks.

A WORD ON COMPATIBILITY
Since Excel 2010 was released, Microsoft has made several versions of Power Pivot
available. Different versions of Power Pivot are being used, depending on the version
of Excel. Be careful when sharing Power Pivot workbooks in environments where some
of your audience is using earlier versions of Excel while others are using more recent
versions of Excel. Opening and refreshing a workbook that contains a Power Pivot
model created with an older version of the Power Pivot add-in will trigger an automatic
upgrade of the underlying model. When this happens, users with older versions of
Excel will no longer be able to use the Power Pivot model in the workbook.

Power Pivot workbooks created in a version of Excel that is older than your version
should give you no problems. However, you won’t be able use Power Pivot workbooks
created in a version of Excel newer than your version.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

CHAPTER 2 Introducing Power Pivot 21

Preparing Excel tables
When linking Excel data to Power Pivot, best practice is to first convert the Excel
data to explicitly named tables. Although not technically necessary, giving tables
friendly names helps track and manage your data in the Power Pivot data model.
If you don’t convert your data to tables first, Excel does it for you and gives your
tables useless names like Table1, Table2, and so on.

Follow these steps to convert each data set into an Excel table:

1.	 Go to the Customers tab and click anywhere inside the data range.

2.	 Press Ctrl+T on the keyboard.

This step opens the Create Table dialog box, shown in Figure 2-3.

3.	 In the Create Table dialog box, ensure that the range for the table is
correct and that the My Table Has Headers check box is selected. Click
the OK button.

You should now see the Table Design tab on the Ribbon.

FIGURE 2-2:
You want to use

Power Pivot to
analyze the data

in the Customers,
InvoiceHeader,

and InvoiceDetails
worksheets.

FIGURE 2-3:
Convert the data

range into an
Excel table.

22 PART 1 Supercharged Reporting with Power Pivot

4.	 Click the Table Design tab, and use the Table Name input to give your
table a friendly name, as shown in Figure 2-4.

This step ensures that you can recognize the table when adding it to the
Internal Data Model.

5.	 Repeat Steps 1 through 4 for the Invoice Header and Invoice Details
data sets.

Adding Excel Tables to the data model
After you convert your data to Excel tables, you’re ready to add them to the Power
Pivot data model. Follow these steps to add the newly created Excel tables to the
data model using the Power Pivot tab:

1.	 Place the cursor anywhere inside the Customers Excel table.

2.	 Go to the Power Pivot tab on the Ribbon and click the Add to Data Model
command.

Power Pivot creates a copy of the table and opens the Power Pivot window, shown
in Figure 2-5.

Although the Power Pivot window looks like Excel, it’s a separate program alto-
gether. Notice that the grid for the Customers table offers row numbers but no
column references. Also notice that you cannot edit the data within the table. This
data is simply a snapshot of the Excel table you imported.

Additionally, if you look at the Windows taskbar at the bottom of the screen, you
can see that Power Pivot has a separate window from Excel. You can switch
between Excel and the Power Pivot window by clicking each respective program
on the taskbar.

If your Windows taskbar combines taskbar buttons, the Power Pivot button may
be hidden with the Excel group of buttons. Click or mouse over the Excel icon on
the taskbar to reach the Power Pivot button.

FIGURE 2-4:
Give your newly

created Excel
table a friendly

name.

CHAPTER 2 Introducing Power Pivot 23

Repeat Steps 1 and 2 in the preceding list for your other Excel tables: Invoice-
Header, InvoiceDetails. After you’ve imported all your Excel tables into the data
model, the Power Pivot window will show each data set on its own tab, as shown
in Figure 2-6.

FIGURE 2-5:
The Power Pivot

window shows all
the data that
exists in your

data model.

FIGURE 2-6:
Each table you

add to the data
model is placed

on its own tab in
Power Pivot.

24 PART 1 Supercharged Reporting with Power Pivot

Because the data you just imported into Power Pivot comes from an Excel table
within the current workbook, Power Pivot will consider these linked tables. So,
even though the data shown in Power Pivot is a snapshot at the time you added it,
the data automatically updates when you edit the source table in Excel. Linked
tables are the only kind of data source that automatically refreshes as the data
within changes.

Creating relationships between
Power Pivot tables
At this point, Power Pivot knows that you have three tables in the data model but
has no idea how the tables relate to one another. You connect these tables by
defining relationships between the Customers, Invoice Details, and Invoice Header
tables. You can do so directly within the Power Pivot window.

If you’ve inadvertently closed the Power Pivot window, you can easily reopen it by
clicking the Manage command button on the Power Pivot Ribbon tab.

Follow these steps to create relationships between your tables:

1.	 Activate the Power Pivot window and click the Diagram View command
button on the Home tab.

The Power Pivot screen you see shows a visual representation of all tables in
the data model, as shown in Figure 2-7.

You can move the tables in Diagram view by simply clicking and dragging them.

The idea is to identify the primary index keys in each table and connect them.
In this scenario, the Customers table and the Invoice Header table can be
connected using the CustomerID field. The Invoice Header and Invoice Details
tables can be connected using the InvoiceNumber field.

FIGURE 2-7:
Diagram view

allows you to see
all tables in the

data model.

CHAPTER 2 Introducing Power Pivot 25

2.	 Click and drag a line from the CustomerID field in the Customers table to
the CustomerID field in the Invoice Header table, as demonstrated in
Figure 2-8.

3.	 Click and drag a line from the InvoiceNumber field in the Invoice Header
table to the InvoiceNumber field in the Invoice Details table.

At this point, your diagram will look similar to Figure 2-9. Notice that Power Pivot
shows a line between the tables you just connected. In database terms, these are
referred to as joins.

The joins in Power Pivot are always one-to-many joins. This means that when a
table is joined to another, one of the tables has unique records with unique index
numbers (CustomerID for example), while the other can have many records where
index numbers are duplicated.

Notice in Figure 2-9 that the join lines have arrows pointing from a table to
another table. The arrows in these join lines will always point to the table that has
the duplicated index. In this case, the Customers table contains a unique list of
customers, each having its own unique identifier. No CustomerID in that table is
duplicated. The Invoice header table has many rows for each CustomerID; each
customer can have many invoices.

FIGURE 2-8:
To create a

relationship, you
simply click and

drag a line
between the
fields in your

tables.

FIGURE 2-9:
When you create
relationships, the

Power Pivot
diagram shows

join lines between
tables.

26 PART 1 Supercharged Reporting with Power Pivot

To close the diagram and return to seeing the data tables, click the Data View
command in the Power Pivot window.

Managing existing relationships
If you need to edit or delete a relationship between two tables in your data model,
you can do so by following these steps:

1.	 Open the Power Pivot window, select the Design tab, and then select the
Manage Relationships command.

2.	 In the Manage Relationships dialog box, shown in Figure 2-10, click the
relationship you want to work with and click Edit or Delete.

If you click Edit, the Edit Relationship dialog box (shown in Figure 2-11) appears.
The columns used to form the relationship are highlighted. Here, you can
redefine the relationship by simply selecting the appropriate columns. You can
also use the Active check box to disable or enable the relationship.

In Figure 2-9, you see a graphic of an arrow between the list boxes. The graphic
has an asterisk next to the list box on the left, and a number 1 next to the list box
on the right. The number 1 basically indicates that the model will use the table
listed on the right as the source for a unique primary key.

Every relationship must have a field that you designate as the primary key. Pri-
mary key fields are necessary in the data model to prevent aggregation errors and
duplications. In that light, the Excel data model must impose some strict rules
around the primary key.

You cannot have any duplicates or null values in a field being used as the primary
key. So the Customers table (refer to Figure 2-9) must have all unique values in
the CustomerID field, with no blanks or null values. This is the only way that Excel
can ensure data integrity when joining multiple tables.

FIGURE 2-10:
Use the Manage

Relationships
dialog box to edit
or delete existing

relationships.

CHAPTER 2 Introducing Power Pivot 27

At least one of your tables must contain a field that serves as a primary key — that
is, a field that contains only unique values and no blanks.

Using the Power Pivot data
model in reporting
After you define the relationships in your Power Pivot data model, it’s essentially
ready for action. In terms of Power Pivot, action means analysis with a pivot table.
In fact, all Power Pivot data is presented through the framework of pivot tables.

In Chapter 3, you dive deep into the workings of pivot tables. For now, dip just a
toe in and create a simple pivot table from your new Power Pivot data model:

1.	 Activate the Power Pivot window, select the Home tab, and then click the
Pivot Table command button.

2.	 Specify whether you want the pivot table placed on a new worksheet or
an existing sheet.

3.	 Build out the needed analysis just as you would build out any other
standard pivot table, using the Pivot Field List.

FIGURE 2-11:
Use the Edit
Relationship

dialog box to
adjust the tables
and field names

that define the
selected

relationship.

28 PART 1 Supercharged Reporting with Power Pivot

The pivot table shown in Figure 2-12 contains all tables in the Power Pivot data
model. Unlike a standard pivot table, where you can use fields from only one table,
the relationships defined the internal data model allow you to use any of the fields
from any of the tables. With this configuration, you have a powerful cross-table
analytical engine in the form of a familiar pivot table. Here, you can see that
you’re calculating the average unit price by customer.

In the days before Power Pivot, this analysis would have been a bear to create. You
would have had to build VLOOKUP formulas to get from Customer Number to
Invoice Number, and then another set of VLOOKUP formulas to get from Invoice
Numbers to Invoice Details. And after all that formula building, you still would
have had to find a way to aggregate the data to the average unit price per
customer.

FIGURE 2-12:
You now have

a Power
Pivot-driven pivot

table that
aggregates across

multiple tables.

CHAPTER 3 The Pivotal Pivot Table 29

Chapter 3
The Pivotal Pivot Table

When creating Power Pivot data models, you will have to use some form
of pivot table structure to expose the data in those models available to
your audience.

Pivot tables have a reputation for being complicated, but if you’re new to pivot
tables, rest easy. This chapter gives you the fundamental understanding you need
in order to analyze and report on the data in your Power Pivot data model. After
completing this introduction, you’ll be pleasantly surprised at how easy it is to
create and use pivot tables.

You can find the sample files for this chapter on this book’s companion website at
www.dummies.com/go/excelpowerpivotpowerqueryfd2e in the workbooks named
Chapter 3 Samples.xlsx and Chapter 3 Slicers.xlsx.

IN THIS CHAPTER

»» Getting to know pivot tables

»» Laying out the geography of a pivot
table

»» Building your first pivot table

»» Creating top and bottom reports

»» Understanding, creating, and
formatting slicers

»» Sprucing up slicers with
customization

»» Controlling multiple pivot tables with
slicers

»» Using timeline slicers

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

30 PART 1 Supercharged Reporting with Power Pivot

Introducing the Pivot Table
A pivot table is a robust tool that allows you to create an interactive view of your
dataset, commonly referred to as a pivot table report. With a pivot table report, you
can quickly and easily categorize your data into groups, summarize large amounts
of data into meaningful analyses, and interactively perform a wide variety of
calculations.

Pivot tables get their name from the way they allow you to drag and drop fields
within the pivot table report to dynamically change (or pivot) perspective and give
you an entirely new analysis using the same data source.

Think of a pivot table as an object you can point at your dataset. When you look at
your dataset through a pivot table, you can see your data from different perspec-
tives. The dataset itself doesn’t change, and it’s not connected to the pivot table.
The pivot table is simply a tool you’re using to dynamically change analyses, apply
varying calculations, and interactively drill down to the detail records.

The reason a pivot table is so well suited for reporting is that you can refresh the
analyses shown through the pivot table by simply updating the dataset that it
points to. You can set up the analysis and presentation layers only one time; then,
to refresh the reporting mechanism, all you have to do is click a button.

Let’s start this exploration of pivot tables with a lesson on the anatomy of a pivot
table.

Defining the Four Areas of a Pivot Table
A pivot table is composed of four areas. The data you place in these areas defines
both the utility and appearance of the pivot table. Take a moment to understand
the function of each of these four areas.

Values area
The values area, as shown in Figure 3-1, is the large, rectangular area below and to
the right of the column and row headings. In the example in Figure 3-1, the values
area contains a sum of the values in the Sales Amount field.

The values area calculates and counts data. The data fields that you drag and drop
there are typically those that you want to measure — fields, such as Sum of
Revenue, Count of Units, or Average of Price.

CHAPTER 3 The Pivotal Pivot Table 31

Row area
The row area is shown in Figure 3-2. Placing a data field into the row area
displays the unique values from that field down the rows of the left side of the
pivot table. The row area typically has at least one field, although it’s possible to
have no fields.

The types of data fields that you would drop here include those that you want to
group and categorize, such as Products, Names, and Locations.

Column area
The column area is composed of headings that stretch across the top of columns in
the pivot table.

FIGURE 3-1:
The values area
of a pivot table
calculates and

counts data.

FIGURE 3-2:
The row area

of a pivot table
gives you a

row-oriented
perspective.

32 PART 1 Supercharged Reporting with Power Pivot

As you can see in Figure 3-3, the column area stretches across the top of the col-
umns. In this example, it contains the unique list of business segments.

Placing a data field into the column area displays the unique values from that field
in a column-oriented perspective. The column area is ideal for creating a data
matrix or showing trends over time.

Filter area
The filter area is an optional set of one or more drop-down lists at the top of the
pivot table. In Figure 3-4, the filter area contains the Region field, and the pivot
table is set to show all regions.

FIGURE 3-3:
The column area

of a pivot table
gives you a

column-oriented
perspective.

FIGURE 3-4:
The filter area
allows you to

easily apply
filters to the

pivot table report.

CHAPTER 3 The Pivotal Pivot Table 33

Placing data fields into the filter area allows you to filter the entire pivot table
based on your selections. The types of data fields that you might drop here include
those that you want to isolate and focus on; for example, Region, Line of Business,
and Employees.

Creating Your First Pivot Table
Now that you have a good understanding of the basic structure of a pivot table, it’s
time to try your hand at creating your first pivot table.

You can find the sample file for this chapter on this book’s companion website.

Follow these steps:

1.	 Click any single cell inside the data source; it’s the table you use to feed
the pivot table.

If you’re following along, the data source would be the table found on the
Sample Data tab.

2.	 Select the Insert tab on the Ribbon and then click the PivotTable com-
mand (shown in Figure 3-5).

This step opens the Create PivotTable dialog box, as shown in Figure 3-6. As
you can see, this dialog box asks you to specify the location of the source data
and the place where you want to put the pivot table.

Notice that in the Create PivotTable dialog box, Excel makes an attempt to fill in
the range of your data for you. In most cases, Excel gets this right. However,
always make sure that the correct range is selected.

FIGURE 3-5:
Start a pivot table
via the Insert tab.

34 PART 1 Supercharged Reporting with Power Pivot

Also note in Figure 3-6 that the default location for a new pivot table is New
Worksheet. This means your pivot table is placed in a new worksheet within
the current workbook. You can change this by selecting the Existing Worksheet
option and specifying the worksheet where you want the pivot table placed.

3.	 Click OK.

At this point, you have an empty pivot table report on a new worksheet. Next
to the empty pivot table, you see the PivotTable Fields task pane, shown in
Figure 3-7.

The idea here is to add the fields you need into the pivot table by using the
four drop zones found in the PivotTable Field List: Filters, Columns, Rows, and
Values. Pleasantly enough, these drop zones correspond to the four areas of
the pivot table described at the beginning of this chapter.

If clicking the pivot table doesn’t open the PivotTable Fields dialog box, you can
manually open it by right-clicking anywhere inside the pivot table and selecting
Show Field List.

Now, before you go wild and start dropping fields into the various drop zones,
you should ask yourself two questions: “What am I measuring?” and “How do
I want to see it?” The answers to these questions give you some guidance when
determining which fields go where.

For your first pivot table report, measure the dollar sales by market. This
automatically tells you that you need to work with the Sales Amount field and
the Market field.

FIGURE 3-6:
The Create
PivotTable
dialog box.

CHAPTER 3 The Pivotal Pivot Table 35

How do you want to see that? You want markets to be listed down the left side
of the report and the sales amount to be calculated next to each market.
Remembering the four areas of the pivot table, you need to add the Market
field to the Rows drop zone and add the Sales Amount field to the Values drop
zone.

4.	 Select the Market check box in the list, as shown in Figure 3-8.

Now that you have regions in the pivot table, it’s time to add the dollar sales.

FIGURE 3-7:
The PivotTable

Fields task pane.

FIGURE 3-8:
Select the Market

check box.

36 PART 1 Supercharged Reporting with Power Pivot

5.	 Select the Sales Amount check box in the list, as shown in Figure 3-9.

Selecting a check box that is non-numeric (text or date) automatically places
that field into the row area of the pivot table. Selecting a check box that is
numeric automatically places that field in the values area of the pivot table.

What happens if you need fields in the other areas of the pivot table? Well,
rather than select the field’s check box, you can drag any field directly to the
different drop zones.

One more thing: When you add fields to the drop zones, you may find it
difficult to see all the fields in each drop zone. You can expand the PivotTable
Fields dialog box by clicking and dragging the borders of the dialog box.

As you can see, you have just analyzed the sales for each market in just five steps!
That’s an amazing feat, considering that you start with more than 60,000 rows of
data. With a little formatting, this modest pivot table can become the starting
point for a management report.

Changing and rearranging a pivot table
Now, here’s the wonderful thing about pivot tables: You can add as many layers of
analysis as made possible by the fields in the source data table. Say that you want
to show the dollar sales that each market earned by business segment. Because the
pivot table already contains the Market and Sales Amount fields, all you have to
add is the Business Segment field.

So, simply click anywhere on the pivot table to reopen the PivotTable Fields task
pane, and then select the Business Segment check box. Figure 3-10 illustrates
what the pivot table should look like now.

FIGURE 3-9:
Add the Sales

Amount field by
selecting its

check box.

CHAPTER 3 The Pivotal Pivot Table 37

If clicking the pivot table doesn’t open the PivotTable Fields task pane, you can
manually open it by right-clicking anywhere inside the pivot table and selecting
Show Field List.

Imagine that your manager says that this layout doesn’t work for them. They
want to see business segments displayed across the top of the pivot table report.
No problem: Simply drag the Business Segment field from the Rows drop zone to
the Columns drop zone. As you can see in Figure 3-11, this instantly restructures
the pivot table to your manager’s specifications.

Adding a report filter
Often, you’re asked to produce reports for one particular region, market, or prod-
uct. Rather than work hours and hours building separate reports for every possible

FIGURE 3-10:
Adding a layer of

analysis is as easy
as bringing in
another field.

FIGURE 3-11:
Your business
segments are

now column
oriented.

38 PART 1 Supercharged Reporting with Power Pivot

analysis scenario, you can leverage pivot tables to help create multiple views of
the same data. For example, you can do so by creating a region filter in the pivot
table.

Click anywhere on the pivot table to reopen the PivotTable Fields task pane, and
then drag the Region field to the Filters drop zone. This adds a drop-down selector
to the pivot table, shown in Figure 3-12 (cell B1). You can then use this selector to
analyze one particular region at a time.

Keeping the pivot table fresh
In Hollywood, it’s important to stay fresh and relevant. As boring as the pivot
tables may seem, they’ll eventually become the stars of your reports. So it’s just
as important to keep your pivot tables fresh and relevant.

As time goes by, your data may change and grow with newly added rows and col-
umns. The action of updating your pivot table with these changes is refreshing
your data.

The pivot table report can be refreshed by simply right-clicking inside the pivot
table report and selecting Refresh, as shown in Figure 3-13.

Sometimes, you’re the data source that feeds your pivot table changes in structure.
For example, you may have added or deleted rows or columns from the data table.
These types of changes affect the range of the data source, not just a few data
items in the table.

FIGURE 3-12:
Adding Region

to the Filters
drop zone

displays a Region
drop-down list.

CHAPTER 3 The Pivotal Pivot Table 39

In these cases, performing a simple Refresh of the pivot table won’t do. You have
to update the range being captured by the pivot table. Here’s how:

1.	 Click anywhere inside the pivot table to select the PivotTable Analyze
context tab on the Ribbon.

2.	 Click Change Data Source, as shown in Figure 3-14.

The Change PivotTable Data Source dialog box appears.

3.	 Change the range selection to include any new rows or columns (see
Figure 3-15).

4.	 Click OK to apply the change.

FIGURE 3-13:
Refreshing the

pivot table
captures changes

made to your
data.

FIGURE 3-14:
Changing the

range that feeds
the pivot table.

FIGURE 3-15:
Select the new

range that feeds
the pivot table.

40 PART 1 Supercharged Reporting with Power Pivot

Customizing Pivot Table Reports
The pivot tables you create often need to be tweaked to get the look and feel you’re
looking for. In this section, I cover some of the options you can adjust to custom-
ize your pivot tables to suit your reporting needs.

Changing the pivot table layout
Excel gives you a choice in the layout of the data in a pivot table. The three layouts,
shown side by side in Figure 3-16, are the Compact Form, Outline Form, and Tab-
ular Form. Although no layout stands out as better than the others, I prefer using
the Tabular Form layout because it seems easiest to read and it’s the layout that
most people who have seen pivot tables are used to.

The layout you choose affects not only the look and feel of your reporting mecha-
nisms but also, possibly, the way you build and interact with any reporting models
based on your pivot tables.

Changing the layout of a pivot table is easy. Follow these steps:

1.	 Click anywhere inside the pivot table to select the Design context tab on
the Ribbon.

2.	 Click the Report Layout icon and choose the layout you like (see
Figure 3-17).

FIGURE 3-16:
The three layouts

for a pivot table
report.

CHAPTER 3 The Pivotal Pivot Table 41

Customizing field names
Notice that every field in the pivot table has a name. The fields in the row, column,
and filter areas inherit their names from the data labels in the source table. The
fields in the values area are given a name, such as Sum of Sales Amount.

Sometimes you might prefer the name Total Sales instead of the unattractive
default name, such as Sum of Sales Amount. In these situations, the ability to
change your field names is handy. To change a field name, follow these steps:

1.	 Right-click any value within the target field.

For example, if you want to change the name of the field Sum of Sales Amount,
right-click the field name, or any value under that field.

2.	 Select Value Field Settings, as shown in Figure 3-18.

The Value Field Settings dialog box appears.

FIGURE 3-17:
Changing the
layout of the

pivot table.

FIGURE 3-18:
Right-click the
target field to

select the Value
Field Settings

option.

42 PART 1 Supercharged Reporting with Power Pivot

3.	 Enter the new name in the Custom Name input box, shown in Figure 3-19.

4.	 Click OK to apply the change.

If you use the name of the data label used in the source table, you receive an error.
For example, if you rename Sum of Sales Amount as Sales Amount, you see an
error message because there’s already a Sales Amount field in the source data
table. Well, this is kind of lame, especially if Sales Amount is exactly what you
want to name the field in your pivot table.

To get around this, you can name the field and add a space to the end of the name.
Excel considers Sales Amount (followed by a space) to be different from Sales
Amount. This way, you can use the name you want and no one will notice that it’s
any different.

Applying numeric formats to data fields
Numbers in pivot tables can be formatted to fit your needs; that is, formatted as
currency, percentage, or number. You can easily control the numeric formatting
of a field using the Value Field Settings dialog box. Here’s how:

1.	 Right-click the target field’s name or any value within the target field.

For example, if you want to change the format of the values in the Sales
Amount field, right-click the field name or any value under that field.

2.	 Select Value Field Settings.

The Value Field Settings dialog box appears.

FIGURE 3-19:
Use the Custom
Name input box

to change the
name of the field.

CHAPTER 3 The Pivotal Pivot Table 43

3.	 Click the Number Format button.

The Format Cells dialog box opens.

4.	 Apply the number format you desire, just as you typically would on your
spreadsheet.

5.	 Click OK to apply the changes.

After you set the formatting for a field, the applied formatting persists, even if
you refresh or rearrange the pivot table.

Changing summary calculations
When creating the pivot table report, Excel, by default, summarizes your data by
either counting or summing the items. Rather than choose Sum or Count, you
might want to choose functions, such as Average, Min, Max, for example. In all, 11
options are available, including

»» Sum: Adds all numeric data.

»» Count: Counts all data items within a given field, including numeric-, text-, and
date-formatted cells.

»» Average: Calculates an average for the target data items.

»» Max: Displays the largest value in the target data items.

»» Min: Displays the smallest value in the target data items.

»» Product: Multiplies all target data items together.

»» Count Numbers: Counts only the numeric cells in the target data items.

»» StdDevP and StdDev: Calculates the standard deviation for the target data
items. Use StdDevP if your dataset contains the complete population. Use
StdDev if your dataset contains a sample of the population.

»» VarP and Var: Calculates the statistical variance for the target data items. Use
VarP if your data contains a complete population. If your data contains only a
sampling of the complete population, use Var to estimate the variance.

You can easily change the summary calculation for any given field by taking the
following actions:

1.	 Right-click any value within the target field.

2.	 Select Value Field Settings.

The Value Field Settings dialog box appears.

44 PART 1 Supercharged Reporting with Power Pivot

3.	 Choose the type of calculation you want to use from the list of calcula-
tions (see Figure 3-20).

4.	 Click OK to apply the changes.

Did you know that a single blank cell causes Excel to count instead of sum? That’s
right: If all cells in a column contain numeric data, Excel chooses Sum. If only one
cell is either blank or contains text, Excel chooses Count.

Be sure to pay attention to the fields that you place into the values area of the pivot
table. If the field name starts with Count Of, Excel is counting the items in the field
instead of summing the values.

Suppressing subtotals
Notice that every time you add a field to the pivot table, Excel adds a subtotal for
that field. At times, however, the inclusion of subtotals either doesn’t make sense
or simply hinders a clear view of the pivot table report. For example, Figure 3-21
shows a pivot table in which the subtotals inundate the report with totals that hide
the real data you’re trying to report.

FIGURE 3-20:
Changing the

type of summary
calculation used

in a field.

CHAPTER 3 The Pivotal Pivot Table 45

Removing all subtotals at one time
You can remove all subtotals at one time by taking these actions:

1.	 Click anywhere inside the pivot table to select the Design context tab on
the Ribbon.

2.	 Click the Subtotals icon and select Do Not Show Subtotals, as shown in
Figure 3-22.

FIGURE 3-21:
Subtotals

sometimes
muddle the
data you’re

trying to show.

FIGURE 3-22:
Use the Do Not
Show Subtotals

option to remove
all subtotals at

one time.

46 PART 1 Supercharged Reporting with Power Pivot

As you can see in Figure 3-23, the same report without subtotals is much more
pleasant to review.

Removing the subtotals for only one field
Maybe you want to remove the subtotals for only one field? In such a case, you can
take the following actions:

1.	 Right-click any value within the target field.

2.	 Select Field Settings.

The Field Settings dialog box appears.

3.	 Choose the None option under Subtotals, as shown in Figure 3-24.

4.	 Click OK to apply the changes.

Removing grand totals
In certain instances, you may want to remove the grand totals from the pivot
table. Follow these steps:

1.	 Right-click anywhere on the pivot table.

2.	 Select PivotTable Options.

The PivotTable Options dialog box appears.

FIGURE 3-23:
The report shown

in Figure 3-21,
without subtotals.

CHAPTER 3 The Pivotal Pivot Table 47

3.	 Click the Totals & Filters tab.

4.	 Click the Show Grand Totals for Rows check box to deselect it.

5.	 Click the Show Grand Totals for Columns check box to deselect it.

6.	 Click OK to apply your changes.

Showing and hiding data items
A pivot table summarizes and displays all records in a source data table. In certain
situations, however, you may want to inhibit certain data items from being
included in the pivot table summary. In these situations, you can choose to hide a
data item.

In terms of pivot tables, hiding doesn’t mean simply preventing the data item
from being shown on the report. Hiding a data item also prevents it from being
factored into the summary calculations.

In the pivot table illustrated in Figure 3-25, I show sales amounts for all business
segments by market. In this example, I want to show totals without taking sales
from the Bikes segment into consideration. In other words, I want to hide the
Bikes segment.

FIGURE 3-24:
Choose the None
option to remove

subtotals for
one field.

48 PART 1 Supercharged Reporting with Power Pivot

You can hide the Bikes Business Segment by clicking the Business Segment drop-
down arrow and deselecting the Bikes check box, as shown in Figure 3-26.

After you click OK to close the selection box, the pivot table instantly recalculates,
leaving out the Bikes segment. As you can see in Figure 3-27, the Market total
sales now reflect the sales without Bikes.

You can just as quickly reinstate all hidden data items for the field. You simply
click the Business Segment drop-down arrow and click the Select All check box, as
shown in Figure 3-28.

FIGURE 3-26:
. . . deselect the

Bikes check box.

FIGURE 3-25:
To remove

Bikes from this
analysis . . .

CHAPTER 3 The Pivotal Pivot Table 49

Hiding or showing items without data
By default, the pivot table shows only data items that have data. This inherent
behavior may cause unintended problems for your data analysis.

Look at Figure 3-29, which shows a pivot table with the SalesPeriod field in the
row area and the Region field in the filter area. Note that the Region field is set to
(All) and that every sales period appears in the report.

If you choose Europe in the filter area, only a portion of all the sales periods is
shown (see Figure 3-30). The pivot table shows only those sales periods that apply
to the Europe region.

From a reporting perspective, it isn’t ideal if half the year’s data disappears every
time customers select Europe.

FIGURE 3-27:
The analysis from

Figure 3-25,
without the Bikes

segment.

FIGURE 3-28:
Clicking the Select

All check box
forces all data

items in that field
to become
unhidden.

50 PART 1 Supercharged Reporting with Power Pivot

Here’s how you can prevent Excel from hiding pivot items without data:

1.	 Right-click any value within the target field.

In this example, the target field is the SalesPeriod field.

2.	 Select Field Settings.

The Field Settings dialog box appears.

3.	 Select the Layout & Print tab in the Field Settings dialog box.

4.	 Select the Show Items with No Data option, as shown in Figure 3-31.

5.	 Click OK to apply the change.

As you can see in Figure 3-32, after you choose the Show Items with No Data
option, all sales periods appear whether the selected region had sales that period
or not.

Now that you’re confident that the structure of the pivot table is locked, you can
use it to feed charts and other components on your report.

FIGURE 3-29:
All sales periods

are showing.

FIGURE 3-30:
Filtering for the

Europe region
causes certain

sales periods to
disappear.

CHAPTER 3 The Pivotal Pivot Table 51

Sorting the pivot table
By default, items in each pivot field are sorted in ascending sequence based on the
item name. Excel gives you the freedom to change the sort order of the items in
the pivot table.

Like many actions you can perform in Excel, you have lots of different ways to sort
data within a pivot table. The easiest way is to apply the sort directly in the pivot
table. Here’s how:

1.	 Right-click any value within the target field — the field you need to sort.

In the example shown in Figure 3-33, you want to sort by Sales Amount.

FIGURE 3-31:
Select the Show

Items with
No Data option

to force Excel
to display all

data items.

FIGURE 3-32:
All sales

periods are
now displayed,

even if there
 is no data

to be shown.

52 PART 1 Supercharged Reporting with Power Pivot

2.	 Select Sort and then select the sort direction.

The changes take effect immediately and persist while you work with the pivot
table.

Understanding Slicers
Slicers allow you to filter your pivot table in a way that’s similar to the way Filter
fields filter a pivot table. The difference is that slicers offer a user-friendly inter-
face, enabling you to better manage the filter state of your pivot table reports.

As useful as Filter fields are, they have always had a couple of drawbacks.

First of all, Filter fields are not cascading filters — the filters don’t work together
to limit selections when needed. For example, in Figure 3-34, you can see that the
Region filter is set to the North America region. However, the Market filter
still allows you to select markets that are clearly not in the North America region
(Germany, for example). Because the Market filter is not in any way limited based
on the Region Filter field, you have the annoying possibility of selecting a market
that could yield no data because it’s not in the North America region.

Another drawback is that Filter fields don’t provide an easy way to tell what
exactly is being filtered when you select multiple items. In Figure 3-35, you can
see an example. The Market filter has been limited to four markets. However,
notice that the Market filter value shows (Multiple Items). By default, Filter
fields show (Multiple Items) when you select more than one item. The only way
to tell what has been selected is to click the drop-down menu. You can imagine the
confusion on a printed version of this report, in which you can’t click down to see
which data items make up the numbers on the page.

FIGURE 3-33:
Applying a sort to
a pivot table field.

CHAPTER 3 The Pivotal Pivot Table 53

By contrast, slicers don’t have these issues. Slicers respond to one another. As you
can see in Figure 3-36, the Market slicer visibly highlights the relevant markets
when the North America region is selected. The rest of the markets are muted,
signaling that they are not part of the selected region.

When selecting multiple items in a slicer, you can easily see that multiple items
have been chosen. In Figure 3-37, you can see that the pivot table is being filtered
by the Northeast and Southwest markets.

FIGURE 3-34:
Default pivot

table Filter fields
do not work

together to limit
filter selections.

FIGURE 3-35:
Filter fields show

the phrase
(Multiple

Items) whenever
multiple

selections are
made.

54 PART 1 Supercharged Reporting with Power Pivot

Creating a Standard Slicer
Enough talk. It’s time to create your first slicer. Just follow these steps:

1.	 Place the cursor anywhere inside the pivot table, and then go up to the
Ribbon and click the PivotTable Analyze tab. There, click the Insert Slicer
icon, shown in Figure 3-38.

This step opens the Insert Slicers dialog box, shown in Figure 3-39. Select the
fields you want to filter. In this example, the Region and Market slicers are
created.

FIGURE 3-37:
Slicers do a better

job at displaying
multiple item

selections.

FIGURE 3-38:
Inserting a slicer.

FIGURE 3-36:
Slicers work

together to show
you relevant data

items based on
your selection.

CHAPTER 3 The Pivotal Pivot Table 55

2.	 After the slicers are created, simply click the filter values to filter the
pivot table.

As you can see in Figure 3-40, clicking Midwest in the Region slicer not only
filters the pivot table, but the Market slicer also responds by highlighting the
markets that belong to the Midwest region.

You can also select multiple values by holding down the Ctrl key on the
keyboard while selecting the needed filters. In Figure 3-41, I held down the Ctrl
key while selecting Baltimore, California, Charlotte, and Chicago. This highlights
not only the selected markets in the Market slicer but also their associated
regions in the Region slicer.

FIGURE 3-39:
Select the fields

for which you
want slicers

created.

FIGURE 3-40:
Select the fields

you want filtered
using slicers.

56 PART 1 Supercharged Reporting with Power Pivot

To clear the filtering on a slicer, simply click the Clear Filter icon on the target
slicer, as shown in Figure 3-42.

Getting Fancy with Slicer Customizations
The following sections cover a few formatting adjustments you can make to your
slicers.

Size and placement
A slicer behaves like a standard Excel shape object in that you can move it around
and adjust its size by clicking it and dragging its position points (see
Figure 3-43).

You can also right-click the slicer and select Size and Properties. This brings up
the Format Slicer pane (see Figure 3-44), allowing you to adjust the size of the
slicer, how the slicer should behave when cells are shifted, and whether the slicer
should appear on a printed copy of your report.

FIGURE 3-41:
The fact that you

can see the
current filter state

gives slicers a
unique advantage

over Filter fields.

FIGURE 3-42:
Clearing the

filters on a slicer.

CHAPTER 3 The Pivotal Pivot Table 57

Data item columns
By default, all slicers are created with one column of data items. You can change
this number by right-clicking the slicer and selecting Size and Properties. This
opens the Format Slicer pane. Under the Position and Layout section, you can
specify the number of columns in the slicer. Adjusting the number to 2, as shown
in Figure 3-45, forces the data items to be displayed in two columns, adjusting the
number to 3 forces the data items to be displayed in three columns, and so on.

FIGURE 3-43:
Adjust the slicer

size and
placement by

dragging its
position points.

FIGURE 3-44:
The Format Slicer
pane offers more
control over how

the slicer behaves
in relation to the

worksheet it’s on.

58 PART 1 Supercharged Reporting with Power Pivot

Miscellaneous slicer settings
Right-clicking the slicer and selecting Slicer Settings opens the Slicer Settings
dialog box, shown in Figure 3-46. Using this dialog box, you can control the look
of the slicer’s header, how the slicer is sorted, and how filtered items are handled.

Controlling Multiple Pivot Tables
with One Slicer

Another advantage you gain with slicers is that each slicer can be tied to more
than one pivot table; that is to say, any filter you apply to your slicer can be applied
to multiple pivot tables.

FIGURE 3-45:
Adjust the

Number of
Columns

property to
display the slicer

data items in
more than one

column.

FIGURE 3-46:
The Slicer

Settings
dialog box.

CHAPTER 3 The Pivotal Pivot Table 59

To connect the slicer to more than one pivot table, simply right-click the slicer
and select Report Connections. This opens the Report Connections dialog box,
shown in Figure 3-47. Place a check mark next to any pivot table that you want to
filter using the current slicer.

At this point, any filter you apply to the slicer is applied to all connected pivot
tables. Controlling the filter state of multiple pivot tables is a powerful feature,
especially in reports that run on multiple pivot tables.

Creating a Timeline Slicer
The Timeline slicer works in the same way a standard slicer does, in that it lets
you filter a pivot table using a visual selection mechanism rather than the old
Filter fields. The difference is that the Timeline slicer is designed to work exclu-
sively with date fields, providing an excellent visual method to filter and group the
dates in the pivot table.

To create a Timeline slicer, the pivot table must contain a field where all data is
formatted as a date. It’s not enough to have a column of data that contains a few
dates. All values in the date field must be a valid date and formatted as such.

To create a Timeline slicer, follow these steps:

1.	 Place the cursor anywhere inside the pivot table, and then click the
PivotTable Analyze tab on the Ribbon. There, click the Insert Timeline
command.

The Insert Timelines dialog box, shown in Figure 3-48, appears, showing you all
available date fields in the chosen pivot table.

2.	 In the Insert Timelines dialog box, select the date fields for which you
want to create the timeline.

FIGURE 3-47:
Choose the
pivot tables

to be filtered
by this slicer.

60 PART 1 Supercharged Reporting with Power Pivot

After the Timeline slicer is created, you can filter the data in the pivot table and
pivot chart, using this dynamic data-selection mechanism. Figure 3-49 demon-
strates how selecting Mar, Apr, and May in the Timeline slicer automatically fil-
ters the pivot chart.

Figure 3-50 illustrates how you can expand the slicer range with the mouse to
include a wider range of dates in your filtered numbers.

FIGURE 3-49:
Click a date

selection to filter
the pivot table or

pivot chart.

FIGURE 3-48:
Select the date
fields for which

you want slicers
created.

CHAPTER 3 The Pivotal Pivot Table 61

Want to quickly filter the pivot table by quarters? Well, that’s easy with a Timeline
slicer. Simply click the time period drop-down menu and select Quarters. As you
can see in Figure 3-51, you can also switch to Years or Days, if needed.

FIGURE 3-50:
You can expand

the range on the
Timeline slicer to

include more
data in the

filtered numbers.

FIGURE 3-51:
Quickly switch

among Quarters,
Years, Months,

and Days.

CHAPTER 4 Using External Data with Power Pivot 63

Chapter 4
Using External Data
with Power Pivot

In Chapter 2, I start an exploration of Power Pivot by showing you how to load
the data already contained within the workbook you’re working on. But as you
discover in this chapter, you’re not limited to using only the data that already

exists in your Excel workbook.

Power Pivot has the ability to reach outside the workbook and import data found
in external data sources. Indeed, what makes Power Pivot powerful is its ability to
consolidate data from disparate data sources and build relationships between
them. You can theoretically create a Power Pivot data model that contains some
data from a SQL Server table, some data from a Microsoft Access database, and
even data from a one-off text file.

In this chapter, I help you continue your journey by taking a closer look at the
mechanics of importing external data into your Power Pivot data models.

This chapter has no associated sample file. But don’t worry: You can easily trans-
late the information found here to your own data sources.

IN THIS CHAPTER

»» Importing from relational databases

»» Importing from flat files

»» Importing data from other data
sources

»» Refreshing and managing external
data connections

64 PART 1 Supercharged Reporting with Power Pivot

Loading Data from Relational Databases
One of the more common data sources used by Excel analysts is the relational
database. It’s not difficult to find an analyst who frequently uses data from Micro-
soft Access, SQL Server, or Oracle databases. In this section, I walk you through
the steps for loading data from external database systems.

Loading data from SQL Server
SQL Server databases are some of the most commonly used for the storing of
enterprise-level data. Most SQL Server databases are managed and maintained by
the IT department. To connect to a SQL Server database, you have to work
with your IT department to obtain Read access to the database you’re trying to
pull from.

After you have access to the database, open the Power Pivot window (select
PowerPivot ➪ Manage from the Excel Ribbon) and then click the From Other
Sources command button on the Home tab. This opens the Table Import Wizard
dialog box, shown in Figure 4-1. There, select the Microsoft SQL Server option and
then click the Next button.

FIGURE 4-1:
Open the Table
Import Wizard

and select
Microsoft SQL

Server.

CHAPTER 4 Using External Data with Power Pivot 65

The Table Import Wizard now asks for all the information it needs to connect to
your database (see Figure 4-2). On this screen, you need to provide the informa-
tion for the options described in this list:

»» Friendly Connection Name: The Friendly Name field allows you to specify
your own name for the external source. You typically enter a name that is
descriptive and easy to read.

»» Server Name: This is the name of the server that contains the database
you’re trying to connect to. You get this from your IT department when you
gain access. (Your server name will be different from the one shown in
Figure 4-2.)

»» Log On to the Server: These are your login credentials. Depending on how
your IT department gives you access, select either Windows Authentication or
SQL Server Authentication. Windows Authentication essentially means that
the server recognizes you by your windows login. SQL Server Authentication
means that the IT department created a distinct username and password for
you. If you’re using SQL Server Authentication, you need to provide a user-
name and password.

»» Save My Password: You can select the check box next to Save My Password if
you want your username and password to be stored in the workbook. Your
connections can then remain refreshable when being used by other people.
This option obviously has security considerations, because anyone can view
the connection properties and see your username and password. You should
use this option only if your IT department has set you up with an application
account (an account created specifically to be used by multiple people).

»» Database Name: Every SQL Server can contain multiple databases. Enter the
name of the database you’re connecting to. You can get it from your IT
department whenever someone gives you access.

After you enter all the pertinent information, click the Next button to see the next
screen, shown in Figure 4-3. You have the choice of selecting from a list of tables
and views or writing your own custom query using SQL syntax. In most cases, you
choose the option to select from a list of tables.

The Table Import Wizard reads the database and shows you a list of all available
tables and views (see Figure 4-4). Tables have an icon that looks like a grid, and
views have an icon that looks like a box on top of another box.

The idea is to place a check mark next to the tables and views you want to import.
In Figure 4-4, note the check mark next to the MasterDates table. The Friendly
Name column allows you to enter a new name that will be used to reference the
table in Power Pivot.

66 PART 1 Supercharged Reporting with Power Pivot

In Figure 4-4, you see the Select Related Tables button. After you select one or
more tables, you can click this button to tell Power Pivot to scan for, and auto-
matically select, any other tables that have a relationship with the table(s) you’ve
already selected. This feature is handy to have when sourcing large databases with
dozens of tables.

Importing a table imports all columns and records for that table. This can have an
impact on the size and performance of your Power Pivot data model. You will often
find that you need only a handful of the columns from the tables you import. In
these cases, you can use the Preview & Filter button.

FIGURE 4-2:
Provide the basic

information
needed to

connect to the
target database.

FIGURE 4-3:
Choose to select

from a list of
tables and views.

CHAPTER 4 Using External Data with Power Pivot 67

FIGURE 4-4:
The Table Import
Wizard offers up

a list of tables
and views.

IMPORTING TABLES VERSUS
IMPORTING VIEWS
You may recall from reading Chapter 1 that views are query objects that are built to
extract subsets of data from database tables based on certain predefined conditions.
(That’s a mouthful!) Views are typically created by someone familiar with the database
as a kind of canned reporting mechanism that outputs a ready-to-use data set.

There are pros and cons to importing tables versus views.

Tables come with the benefit of defined relationships. When you import tables, Power
Pivot can recognize the relationships between the tables and automatically duplicate
the relationships in the data model. Tables are also more transparent, allowing you to
see all the raw unfiltered data. However, when you import tables, you have to have
some level of understanding of the database schema and how the values within the
tables are utilized in context of the organization’s business rules. In addition, importing
a table imports all the columns and records, whether you need them or not. To keep
the size of your Power Pivot data model manageable, this often forces you to take the
extra step of explicitly filtering out the columns you don’t need.

(continued)

68 PART 1 Supercharged Reporting with Power Pivot

Click the table name to highlight it in blue (refer to Figure 4-4), and then click the
Preview & Filter button. The Table Import Wizard opens the Preview Selected
Table screen, shown in Figure 4-5. You can see all columns available in the table,
with a sampling of rows.

Each column header has a check box next to it, indicating that the column will be
imported with the table. Removing the check mark tells Power Pivot to not include
that column in the data model. For instance, in Figure 4-5, only the first three
columns are checked; the unchecked columns won’t be imported.

You also have the option to filter out certain records. Figure 4-6 demonstrates
that clicking on the drop-down arrow for any of the columns opens a Filter menu
that allows you to specify criterion to filter out unwanted records. This works just
like the standard filtering in Excel. You can select and deselect the data items in
the filtered list, or, if there are too many choices, you can apply a broader criteria
by clicking Date Filters above the list. (If you’re filtering a textual column, it’s
Text Filters.)

After you finish selecting your data and applying any needed filters, you can click
the Finish button on the Table Import Wizard to start the import process. The
import log, shown in Figure 4-7, shows the progress of the import and summa-
rizes the import actions taken after completion.

Views are often cleaner data sets because they are already optimized to include only the
columns and data that are necessary. In addition, you don’t need to have an intimate
knowledge of the database schema. Someone with that knowledge has already done
the work for you — joined the correct tables, applied the appropriate business rules,
and optimized output, for example. What you lose with views, however, is the ability for
Power Pivot to automatically recognize and build relationships within the data model.
Also, if you don’t have the rights to open the views in Design mode, you lose transpar-
ency because you cannot see exactly what the view is doing to come up with its final
output.

In terms of which is better to use — tables or views — it’s generally considered a best
practice to use views whenever possible. They not only provide you with cleaner, more
user-friendly data but can also help streamline your Power Pivot data model by limiting
the amount of data you import. Regardless, using tables is by no means frowned upon
and is often the only option because of the lack of database rights or availability of pre-
defined views. You may even find yourself importing both tables and views from the
same database.

(continued)

CHAPTER 4 Using External Data with Power Pivot 69

FIGURE 4-5:
The Preview &

Filter screen
allows you to

uncheck columns
you don’t need.

FIGURE 4-6:
Use the drop-

down arrows next
to each column to

filter out
unneeded

records.

70 PART 1 Supercharged Reporting with Power Pivot

The final step in loading data from SQL Server is to review and create any needed
relationships. Back in the Power Pivot window, click the Diagram View command
button on the Home tab. Power Pivot opens the diagram screen, where you can
view and edit relationships as needed.

Refer to Chapter 2 for a refresher on managing relationships for tables imported
into the internal data model.

Don’t panic if you feel like you’ve botched the column-and-record filtering on
your imported Power Pivot table. Simply select the worrisome table in the Power
Pivot window and open the Edit Table Properties dialog box (choose Design ➪ Table
Properties). Note that this dialog box is basically the same Preview & Filter screen
you encounter in the Import Table Wizard (refer to Figure 4-5). From here, you
can select columns you originally filtered out, edit record filters, clear filters, or
even use a different table/view.

Loading data from Microsoft
Access databases
Because Microsoft Access has traditionally been made available with the Microsoft
Office suite of applications, Access databases have long been used by organiza-
tions to store and manage mission-critical departmental data. Walk into any
organization, and you will likely find several Access databases that contain
useful data.

FIGURE 4-7:
The last screen of
the Table Import

Wizard shows you
the progress of

your import
actions.

CHAPTER 4 Using External Data with Power Pivot 71

Unlike SQL Server databases, Microsoft Access databases are typically found on
local desktops and directories. This means you can typically import data from
Access without the help of your IT department.

Open the Power Pivot window and click the From Other Sources command button
on the Home tab. This opens the Table Import Wizard dialog box, shown in
Figure 4-8. Select the Microsoft Access option, and then click the Next button.

The Table Import Wizard asks for all the information it needs to connect to your
database (see Figure 4-9).

On this screen, you need to provide the information for these options:

»» Friendly Connection Name: The Friendly Name field allows you to specify
your own name for the external source. You typically enter a name that is
descriptive and easy to read.

»» Database Name: Enter the full path of your target Access database. You can
use the Browse button to search for and select the database you want to pull
from.

FIGURE 4-8:
Open the

Table Import
Wizard and select
Microsoft Access.

72 PART 1 Supercharged Reporting with Power Pivot

»» Log On to the Database: Most Access databases aren’t password protected.
But if you’re connecting one that does require a username and password,
enter your login credentials.

»» Save My Password: You can select the check box next to Save My Password if
you want your username and password to be stored in the workbook. Then
your connections can remain “refreshable” when being used by other people.
Keep in mind that anyone can view the connection properties and see your
username and password.

Because Access databases are essentially desktop files (.mdb or .accdb), they’re
susceptible to being moved, renamed, or deleted. Be aware that the connections in
your workbook are hard coded, so if you do move, rename, or delete your Access
database, you can no longer connect it.

At this point, you can click the Next button to continue with the Table Import
Wizard. From here on out, the process is virtually identical to importing SQL
Server data, covered in the last section (starting at Figure 4-3).

Loading data from other relational
database systems
Whether your data lives in Oracle, dBase, or MySQL, you can load data from virtu-
ally any relational database system. As long as you have the appropriate database
drivers installed, you have a way to connect Power Pivot to your data.

FIGURE 4-9:
Provide the basic

information
needed to

connect to the
target database.

CHAPTER 4 Using External Data with Power Pivot 73

Open the Power Pivot window and click the From Other Sources command button
on the Home tab. This opens the Table Import Wizard dialog box, shown in
Figure 4-10. The idea is to select the appropriate relational database system. If you
need to import data from Oracle, select Oracle. If you need to import data from
Sybase, select Sybase.

Connecting to any of these relational systems takes you through roughly the same
steps as importing SQL Server data, earlier in this chapter. You may see some
alternative dialog boxes based on the needs of the database system you select.

Understandably, Microsoft cannot possibly create a named connection option for
every database system out there. So you may not find your database system listed.
In this case, simply select the Others option (OLEDB/ODBC). Selecting this option
opens the Table Import Wizard, starting with a screen asking you to enter or paste
the connection string for your database system (see Figure 4-11).

You may be able to get this connection string from your IT department. If you’re
having trouble finding the correct syntax for your connection string, you can use
the Build button to create the string via a set of dialog boxes. Pressing the Build
button opens the Data Link Properties dialog box, shown in Figure 4-12.

FIGURE 4-10:
Open the Table
Import Wizard

and select your
target relational

database system.

74 PART 1 Supercharged Reporting with Power Pivot

Start with the Provider tab, selecting the appropriate driver for your database sys-
tem. The list you see on your computer will be different from the list shown in
Figure 4-13. Your list will reflect the drivers you have installed on your own
machine.

FIGURE 4-11:
Enter the

connection string
for your database

system.

FIGURE 4-12:
Use the Data

Link Properties
dialog box

to configure
a custom

connection
string to your

relational
database

system.

CHAPTER 4 Using External Data with Power Pivot 75

After selecting a driver, move through each tab on the Data Link Properties dialog
box and enter the necessary information. When it’s complete, click OK to return to
the Table Import Wizard, where you see the connection string input box populated
with the connection string needed to connect to your database system (see
Figure 4-13).

Again, from here on out, the process is virtually identical to importing SQL Server
data, as covered earlier in this chapter (starting at Figure 4-3).

To connect to any database system, you must have that system’s drivers installed
on your PC. Because SQL Server and Access are Microsoft products, their drivers
are virtually guaranteed to be installed on any PC with Windows installed. The
drivers for other database systems, however, need to be explicitly installed —
typically, by the IT department either at the time the machine is loaded with cor-
porate software or upon demand. If you don’t see the needed drivers for your
database system, contact your IT department.

Loading Data from Flat Files
The term flat file refers to a file that contains some form of tabular data without
any sort of structural hierarchy or relationship between records. The most com-
mon types of flat files are Excel files and text files. Whether anyone likes to admit
it or not, a ton of important data is maintained in flat files. In this section, I tell
you how to import these flat file data sources into the Power Pivot data model.

FIGURE 4-13:
The Table Import

Wizard displays
the final syntax

for your
connection string.

76 PART 1 Supercharged Reporting with Power Pivot

Loading data from external Excel files
In Chapter 2, I show you how to create linked tables by loading Power Pivot with
the data contained within the same workbook. Linked tables have a distinct
advantage over other types of imported data in that they immediately respond to
changes in the source data within the workbook. If you change the data in one of
the tables in the workbook, the linked table within the Power Pivot data model
automatically changes. The real-time interactivity you get with linked tables is
especially helpful if you’re making frequent changes to your data.

The drawback to linked tables is that the source data must be stored in the same
workbook as the Power Pivot data model. This isn’t always possible. You’ll
encounter plenty of scenarios where you need to incorporate Excel data into your
analysis, but that data lives in another workbook. In these cases, you can use
Power Pivot’s Table Import Wizard to connect to external Excel files.

Open the Power Pivot window and click the From Other Sources command button
on the Home tab. This opens the Table Import Wizard dialog box, shown in
Figure 4-14. Select the Excel File option and then click the Next button.

FIGURE 4-14:
Open the Table
Import Wizard

and select
Excel File.

CHAPTER 4 Using External Data with Power Pivot 77

The Table Import Wizard asks for all the information it needs to connect to your
target workbook (see Figure 4-15).

On this screen, you need to provide the following information:

»» Friendly Connection Name: In the Friendly Connection Name field, you
specify your own name for the external source. You typically enter a name
that is descriptive and easy to read.

»» Excel File Path: Enter the full path of your target Excel workbook. You can use
the Browse button to search for and select the workbook you want to pull
from.

»» Use First Row as Column Headers: In most cases, your Excel data will
have column headers. Select the check box next to Use First Row As Column
Headers to ensure that your column headers are recognized as headers
when imported.

After you enter all the pertinent information, click the Next button to see the next
screen, shown in Figure 4-16. You see a list of all worksheets and named ranges
in the chosen Excel workbook. Place a check mark next to the data set you want to
import. The Friendly Name column allows you to enter a new name that will be
used to reference the data in Power Pivot.

FIGURE 4-15:
Provide the basic

information
needed to

connect to the
target workbook.

78 PART 1 Supercharged Reporting with Power Pivot

As discussed earlier in this chapter, in the section “Loading Data from Relational
Databases,” you can use the Preview & Filter button to filter out unwanted col-
umns and records, if needed. Otherwise, continue with the Table Import Wizard to
complete the import process. As always, be sure to review and create relationships
to any other tables you’ve loaded into the Power Pivot data model.

Loading external Excel data doesn’t give you the same interactivity you get with
linked tables. As with importing database tables, the data you bring from an
external Excel file is simply a snapshot. You need to refresh the data connection to
see any new data that may have been added to the external Excel file (see “Refresh-
ing and Managing External Data Connections,” later in this chapter).

Loading data from text files
The text file is another type of flat file used to distribute data. This type of file is
commonly output from legacy systems and websites. Excel has always been able
to consume text files. With Power Pivot, you can go further and integrate them
with other data sources.

Open the Power Pivot window and click the From Other Sources command button
on the Home tab. This opens the Table Import Wizard dialog box shown in
Figure 4-17. Select the Text File option and then click the Next button.

The Table Import Wizard asks for all the information it needs to connect to the
target text file (see Figure 4-18).

FIGURE 4-16:
Select the data

sources to
import.

CHAPTER 4 Using External Data with Power Pivot 79

FIGURE 4-17:
Open the Table
Import Wizard

and select
Text File.

FIGURE 4-18:
Provide the basic

information
needed to

connect to the
target text file.

80 PART 1 Supercharged Reporting with Power Pivot

On this screen, you provide the following information:

»» Friendly Connection Name: The Friendly Connection Name field allows you
to specify your own name for the external source. You typically enter a name
that is descriptive and easy to read.

»» File Path: Enter the full path of your target text file. You can use the Browse
button to search for and select the file you want to pull from.

»» Column Separator: Select the character used to separate the columns in the
text file. Before you can do this, you need to know how the columns in your
text file are delimited. For instance, a comma-delimited file will have commas
separating its columns. A tab-delimited file will have tabs separating the
columns. The drop-down list in the Table Import Wizard includes choices for
the more common delimiters: Tab, Comma, Semicolon, Space, Colon, and
Vertical bar.

»» Use First Row as Column Headers: If your text file contains header rows, be
sure to select the check box next to Use First Row as a Column Headers. This
ensures that the column headers are recognized as headers when imported.

Notice that you see an immediate preview of the data in the text file. Here, you can
filter out any unwanted columns by simply removing the check mark next to the
column names. You can also use the drop-down arrows next to each column to
apply any record filters.

Clicking the Finish button immediately starts the import process. Upon comple-
tion, the data from your text file will be part of the Power Pivot data model. As
always, be sure to review and create relationships to any other tables you’ve
loaded into Power Pivot.

Anyone who’s worked with text files in Excel knows that they’re notorious for
importing numbers that look like numbers, but are really coded as text. In stan-
dard Excel, you use Text to Columns to fix these kinds of issues. Well, this can be
a problem in Power Pivot, too.

When importing text files, take the extra step of verifying that all columns have
been imported with the correct data formatting. You can use the formatting tools
found on the Power Pivot window’s Home tab to format any column in the data
model.

CHAPTER 4 Using External Data with Power Pivot 81

Loading data from the Clipboard
Power Pivot includes an interesting option for loading data straight from the
Clipboard — that is to say, pasting data you’ve copied from some other place. This
option is meant to be used as a one-off technique to quickly get useful informa-
tion into the Power Pivot data model.

As you consider this option, keep in mind that there is no real data source. It’s just
you manually copying and pasting. You have no way to refresh the data, and you
have no way to trace back to where you copied the data from.

Imagine that you’ve received the Word document shown in Figure 4-19. You like
the nifty table of holidays within the document, and you believe it would be useful
in your Power Pivot data model.

You can copy the table and then go to the Power Pivot window and click the Paste
command on the Home tab. This opens the Paste Preview dialog box, shown in
Figure 4-20, where you can review what exactly will be pasted. You won’t see
many options here. You can specify the name that will be used to reference the
table in Power Pivot, and you can specify whether the first row is a header.

Clicking the OK button imports the pasted data into Power Pivot without a lot of
fanfare. At this point, you can adjust the data formatting and create the needed
relationships.

FIGURE 4-19:
You can copy

data straight out
of Microsoft

Word.

82 PART 1 Supercharged Reporting with Power Pivot

Loading Data from Other Data Sources
At this point, I’ve covered the data sources that are most important to a majority
of Excel analysts. Still, there are a few more data sources that Power Pivot is able
to connect to and load data from. I touch on some of these data sources later in
this book, though others remain out of scope.

Although these data sources are not likely to be used by your average analyst, it’s
worth dedicating a few lines to each one, if only to know that they exist and are
available if ever you should need them:

»» Microsoft SQL Azure: SQL Azure is a cloud-based relational database service
that some companies use as an inexpensive way to gain the benefits of SQL
Server without taking on the full cost of hardware, software, and IT staff.
Power Pivot can load data from SQL Azure in much the same way as the other
relational databases I talk about in this chapter.

»» Microsoft Analytics Platform System: Azure Synapse Analytics is an
analytics service that allows for data integration, enterprise data warehousing,
and big data analytics. From a Power Pivot perspective, it’s no different than
connecting to any other relational database.

»» Microsoft Analysis Services: Analysis Services is Microsoft’s OLAP (Online
Analytical Processing) product. The data in Analysis Services is traditionally
stored in a multidimensional cube.

FIGURE 4-20:
The Paste

Preview dialog
box gives you a

chance to see
what you’re

pasting.

CHAPTER 4 Using External Data with Power Pivot 83

»» Report: The curiously named Report data source refers to SQL Server
Reporting Services reports. In a very basic sense, Reporting Services is a
business intelligence tool used to create stylized PDF-style reports from SQL
Server data. In the context of Power Pivot, a Reporting Services Report can be
used as a data-feed service, providing a refreshable connection to the
underlying SQL Server data.

»» Other Feeds: The Other Feeds data source allows you to import data from
OData web services into Power Pivot. OData connections are facilitated by
XML Atom files. Point the OData connection to the URL of the .atomsvcs file
and you essentially have a connection to the published web service.

Refreshing and Managing External
Data Connections

When you load data from an external data source into Power Pivot, you essentially
create a static snapshot of that data source at the time of creation. Power Pivot
uses that static snapshot in its Internal Data Model.

As time goes by, the external data source may change and grow with newly added
records. However, Power Pivot is still using its snapshot, so it can’t incorporate
any of the changes in your data source until you take another snapshot.

The action of updating the Power Pivot data model by taking another snapshot of
your data source is called refreshing the data. You can refresh manually, or you can
set up an automatic refresh.

Manually refreshing Power Pivot data
On the home tab of the Power Pivot window, you see the Refresh command. Click
the drop-down arrow below it to see two options shown in Figure 4-21: Refresh
and Refresh All.

FIGURE 4-21:
Power Pivot

allows you to
refresh one table

or all tables.

84 PART 1 Supercharged Reporting with Power Pivot

Use the Refresh option to refresh the Power Pivot table that’s active. That is to say,
if you’re on the Products_Table tab in Power Pivot, clicking Refresh reaches out
to the external source and requests an update for only that table. This works nicely
when you need to strategically refresh only certain data sources.

Use the Refresh All option to refresh all tables in the Power Pivot data model.

Setting up automatic refreshing
You can configure your data sources to automatically pull the latest data and
refresh Power Pivot.

Go to the Data tab on the Ribbon and select the Queries & Connections command.
The Queries & Connections task pane, shown in Figure 4-22, opens. Right-click
the data connection you want to work with and then click the Properties button.

With the Connection Properties dialog box open, select the Usage tab. Here, you’ll
find an option to refresh the chosen data connection every X minutes and an
option to refresh the data connection when the Excel workbook is opened (see
Figure 4-23):

»» Refresh Every X Minutes: Placing a check next to this option tells Excel to
automatically refresh the chosen data connection a specified number of
minutes. This refreshes all tables associated with that connection.

FIGURE 4-22:
Select a

connection and
click the

Properties
button.

CHAPTER 4 Using External Data with Power Pivot 85

»» Refresh Data When Opening the File: Placing a check mark next to this
option tells Excel to automatically refresh the chosen data connection after
opening of the workbook. This refreshes all tables associated with that
connection as soon as the workbook is opened.

Preventing Refresh All
Earlier in this section, you see that you can refresh all connections that feed Power
Pivot, by using the Refresh All command (refer to Figure 4-21). Well, there are
actually two more places where you can click Refresh All in Excel: on the Data tab
in the Excel Ribbon and on the PivotTable Analyze tab you see when working in a
pivot table.

Clicking any Refresh All button anywhere in Excel essentially completely reloads
Power Pivot, refreshes all pivot tables, and updates all workbook data connections.
If your Power Pivot data model imports millions of lines of data from an external
data source, you may well want to avoid using the Refresh All feature.

FIGURE 4-23:
The Connection

Properties dialog
box lets you

configure the
chosen data

connection to
refresh

automatically.

86 PART 1 Supercharged Reporting with Power Pivot

Luckily, you have a way to prevent certain data connections from refreshing when
Refresh All is selected. Go to the Data tab on the Excel Ribbon and select the Que-
ries & Connections command. This opens the Queries & Connections task pane,
where you right-click the data connection you want to configure, and then click
the Properties button.

When the Connection Properties dialog box has opened, select the Usage tab and
then remove the check mark next to the Refresh This Connection on Refresh All
(as shown in Figure 4-24).

Editing the data connection
In certain instances, you may need to edit the source data connection after you’ve
already created it. Unlike refreshing, where you simply take another snapshot of
the same data source, editing the source data connection allows you to go back
and reconfigure the connection itself. Here are a few reasons you may need to edit
the data connection:

»» The location or server or data source file has changed.

»» The name of the server or data source file has changed.

FIGURE 4-24:
The Connection

Properties dialog
box lets you

configure the
chosen data

connection to
ignore the
Refresh All
command.

CHAPTER 4 Using External Data with Power Pivot 87

»» You need to edit your login credentials or authentication mode.

»» You need to add tables you left out during initial import.

In the Power Pivot window, go to the Home tab and click the Existing Connections
command button. The Existing Connections dialog box, shown in Figure 4-25,
opens. Your Power Pivot connections are under the Power Pivot Data Connections
subheading. Choose the data connection that needs editing.

After your target data connection is selected, look to the Edit and Open buttons.
The button you click depends on what you need to change:

»» Edit button: Lets you reconfigure the server address, file path, and authenti-
cation settings.

»» Open button: Lets you import a new table from the existing connection,
which is handy when you’ve inadvertently missed a table during the initial
loading of data.

»» Refresh button: Lets you refresh the selected data source.

»» Browse for More: Lets you quickly establish a new data connection by
pointing to an existing Office Database Connection (.odc) file.

FIGURE 4-25:
Use the Existing

Connections
dialog box to

reconfigure your
Power Pivot
source data

connections.

CHAPTER 5 Working Directly with the Internal Data Model 89

Chapter 5
Working Directly with
the Internal Data Model

In the preceding chapters, you use the Power Pivot add-in to work with the
internal data model. But as you’ll see in this chapter, you can use a combination
of pivot tables and Excel data connections to directly interact with the internal

data model, without the Power Pivot add-in.

You can find the sample files for this chapter on this book’s companion website at
www.dummies.com/go/excelpowerpivotpowerqueryfd2e. These include the
Chapter 5 Sample File.xlsx Excel workbook and the Facility Services.
accdb Access database.

Directly Feeding the Internal Data Model
Imagine that you have the Transactions table you see in Figure 5-1, and on another
worksheet you have an Employees table (see Figure 5-2) that contains informa-
tion about the employees.

IN THIS CHAPTER

»» Interacting with the internal data
model directly

»» Starting a pivot table from the
internal data model

»» Using multiple tables with the
internal data model

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

90 PART 1 Supercharged Reporting with Power Pivot

You need to create an analysis that shows sales by job title. This would normally
be difficult given the fact that sales and job title are in two separate tables. But
with the internal data model, you can follow these simple steps:

1.	 Click inside the Transactions data table and start a new pivot table by
choosing Insert ➪   PivotTable from the Ribbon.

2.	 In the Create PivotTable dialog box, place a check next to the option
called Add This Data to the Data Model (see Figure 5-3) and then click OK.

3.	 Click inside the Employees data table and start a new pivot table by
choosing Insert ➪ PivotTable from the Ribbon.

Again, be sure to select the Add This Data to the Data Model option, as shown
in Figure 5-4.

FIGURE 5-1:
This table shows

transactions by
employee

number.

FIGURE 5-2:
This table
provides

information on
employees: first

name, last name,
and job title.

CHAPTER 5 Working Directly with the Internal Data Model 91

Notice that in Figures 5-3 and 5-4, the Create PivotTable dialog boxes are
referencing named ranges. That is to say, each table was given a specific name.
When you’re adding data to the internal data model, it’s a best practice to
name the data tables. This way, you can easily recognize your tables in the
internal data model.

If you don’t name your tables, the internal data model shows them as Range1,
Range2, and so on.

FIGURE 5-3:
When you create
a new pivot table

from the
Transactions

table, be sure to
select Add This

Data to the
Data Model.

FIGURE 5-4:
Create a new

pivot table from
the Employees

table, and select
Add This Data to
the Data Model.

92 PART 1 Supercharged Reporting with Power Pivot

4.	 To give the data table a name, simply highlight all data in the table, and
then select Formulas ➪ Define Name command from the Ribbon. In the
dialog box, enter a name for the table.

Repeat for all other tables.

5.	 After both tables have been added to the internal data model, open the
PivotTable Fields list and choose the ALL selector, as shown in Figure 5-5.

This step shows both ranges in the field list.

6.	 Build out the pivot table as normal. In this case, Job_Title is placed in the
Row area, and Sales_Amount goes to the Values area.

As you can see in Figure 5-6, Excel immediately recognizes that you’re using
two tables from the internal data model and prompts you to create a relation-
ship between them. You have the option to let Excel autodetect the relation-
ships between your tables or to click the Create button. Always create the
relationships yourself, to avoid any possibility of Excel getting it wrong.

7.	 Click the Create button.

Excel opens the Create Relationship dialog box, shown in Figure 5-7. There, you
select the tables and fields that define the relationship. In Figure 5-7, you can
see that the Transactions table has a Sales_Rep field. It’s related to the
Employees table via the Employee_Number field.

FIGURE 5-5:
Select ALL in the
PivotTable Fields

list to see both
tables in the
internal data

model.

CHAPTER 5 Working Directly with the Internal Data Model 93

After you create the relationship, you have a single pivot table that effectively uses
data from both tables to create the analysis you need. Figure 5-8 illustrates that,
by using the Excel internal data model, you’ve achieved the goal of showing sales
by job title.

In Figure 5-7, you see that the lower-right drop-down is named Related Column
(Primary). The term primary means that the internal data model uses this field
from the associated table as the primary key.

A primary key is a field that contains only unique non-null values (no duplicates or
blanks). Primary key fields are necessary in the data model to prevent aggregation
errors and duplications. Every relationship you create must have a field desig-
nated as the primary key.

FIGURE 5-6:
When Excel

prompts you,
choose to create
the relationship

between the
two tables.

FIGURE 5-7:
Build the

appropriate
relationship

using the Table
and Column

drop-down lists.

94 PART 1 Supercharged Reporting with Power Pivot

FIGURE 5-8:
You’ve achieved

your goal of
showing sales by

job title.

THE LIMITATIONS OF POWER
PIVOT-DRIVEN PIVOT TABLES
Pivot tables built on top of Power Pivot or the internal data model come with limitations
that could be showstoppers in terms of your reporting needs. Here’s a quick rundown
of the limitations you should consider before deciding to base your pivot table reporting
on Power Pivot or the internal data model:

•	 The Group feature is disabled for Power Pivot–driven pivot tables. You can’t roll
dates into months, quarters, or years, for example.

•	 In a standard pivot table, you can double-click a cell in the pivot to drill into to the
rows that make up the figure in that cell. In Power Pivot–driven pivot tables, how-
ever, you see only the first 1,000 rows.

•	Power Pivot–driven pivot tables don’t allow you to create the traditional Calculated
Fields and Calculated Items found in standard Excel pivot tables.

•	Workbooks that use the Power Pivot data model can’t be refreshed or configured if
opened in a version of Excel earlier than Excel 2013.

•	 You can’t use custom lists to automatically sort the data in your Power Pivot–driven
pivot tables.

•	Neither the Product nor Count Numbers summary calculations are available in
Power Pivot–driven pivot tables.

CHAPTER 5 Working Directly with the Internal Data Model 95

The Employees table (in the scenario in Figure 5-7) must have all unique values in
the Employee_Number field, with no blanks or null values. This is the only way that
Excel can ensure data integrity when joining multiple tables.

Managing Relationships in the
Internal Data Model

After you assign tables to the internal data model, you might need to adjust the
relationships between the tables. To make changes to the relationships in an
internal data model, click the Data tab on the Ribbon and select the Relationships
command. The Manage Relationships dialog box, shown in Figure 5-9, opens.

Here, you’ll find the following commands:

»» New: Create a new relationship between two tables in the internal
data model.

»» Auto-Detect: Ask Power Pivot to automatically detect and create
relationships.

»» Edit: Alter the selected relationship.

»» Activate: Enforce the selected relationship, telling Excel to consider the
relationship when aggregating and analyzing the data in the internal data
model.

FIGURE 5-9:
The Manage

Relationships
dialog box

enables you to
make changes to
the relationships

in the internal
data model.

96 PART 1 Supercharged Reporting with Power Pivot

»» Deactivate: Turn off the selected relationship, telling Excel to ignore the
relationship when aggregating and analyzing the data in the internal data
model.

»» Delete: Remove the selected relationship.

Managing Queries and Connections
Select the Data tab on the Ribbon and then select the Queries & Connections com-
mand. Excel will activate the Queries & Connections task pane (see Figure 5-10).
At the top of the task pane, you’ll see two tabs: Queries and Connections. The
Queries tab lets you view and manage the queries within the current workbook.
The Connections tab lets you manage the connection information stored in your
workbook.

If you receive a workbook that is unfamiliar to you, it’s best practice to activate
Queries & Connections just to see if you’re dealing with any external connections
or queries in the internal data model of the workbook.

Right-click any of the entries on the Connections tab to expose a shortcut menu
for that entry, allowing you to refresh the connection, delete the connection, or
edit the connection properties.

The connection name for the internal data model will always be ThisWorkbook-
DataModel. Excel won’t allow you to delete the ThisWorkbookDataModel
connection.

FIGURE 5-10:
Use the Queries

& Connections
task pane to
manage the
queries and
connections

in the internal
data model.

CHAPTER 5 Working Directly with the Internal Data Model 97

Creating a New Pivot Table Using
the Internal Data Model

In certain instances, you may want to create a pivot table from scratch using the
existing internal data model as the source data. Here are the steps to do so:

1.	 Choose Insert ➪ PivotTable from the Ribbon.

The Create PivotTable dialog box opens.

2.	 Select the Use an External Data Source option, as shown in Figure 5-11,
and then click the Choose Connection button.

You see the Existing Connections dialog box, as shown in Figure 5-12.

3.	 On the Tables tab, select Tables in Workbook Data Model, and then click
the Open button.

You return to the Create PivotTable dialog box.

4.	 Click the OK button to create the pivot table.

If all goes well, you see the PivotTable Fields dialog box with all tables that are
included in the internal data model, as shown in Figure 5-13.

FIGURE 5-11:
Open the Create
PivotTable dialog

box and choose
the external
data-source

option.

98 PART 1 Supercharged Reporting with Power Pivot

Filling the Internal Data Model with
Multiple External Data Tables

Suppose you have an Access database that contains a normalized set of tables. You
want to analyze the data in that database in Excel, so you decide to use the new
Excel internal data model to expose the data you need through a pivot table.

FIGURE 5-12:
Use the Existing

Connections
dialog box to

select the Data
Model as the data

source for your
pivot table.

FIGURE 5-13:
The newly

created pivot
table shows all

tables in the
internal data

model.

CHAPTER 5 Working Directly with the Internal Data Model 99

To accomplish this task, follow these steps:

1.	 Select Data ➪ Get Data ➪ From Database ➪ From Microsoft Access
Database (see Figure 5-14).

2.	 Browse to your target Access database and open it.

The Navigator dialog box opens.

3.	 Place a check mark next to the Enable Selection of Multiple Tables option
(see Figure 5-15).

FIGURE 5-14:
Getting data

from a Microsoft
Access database.

FIGURE 5-15:
Enable the

selection of
multiple tables.

100 PART 1 Supercharged Reporting with Power Pivot

4.	 Place a check mark next to each table that you want to import into the
internal data model.

5.	 Click the drop-down arrow next to the Load button and select the Load
To option as shown in Figure 5-16.

The Import Data dialog box opens (see Figure 5-17).

6.	 Choose the PivotTable Report option and click OK to create the base
pivot.

FIGURE 5-16:
Place a check

next to each table
you want import

to the internal
data model, then
activate the Load

To option.

FIGURE 5-17:
Create a

PivotTable Report
from the Import

Data dialog.

CHAPTER 5 Working Directly with the Internal Data Model 101

You now have a pivot table based on external data imported into the internal data
model (see Figure 5-18). A quick look at the Pivot Table Field list shows all the
external data sources imported into the internal data model.

In just a few clicks, you’ve created a powerful platform to build and maintain pivot
table analysis based on data in an Access database!

When you import tables from multiple data sources, Excel tries to detect and cre-
ate relationships between the tables. It typically does a good job at recognizing the
appropriate relationships, especially when your tables contain common column
names such as EmployeeID and SalesRep. Though Excel gets the relationships
right in most cases, it’s always best to confirm the right relationships were cre-
ated before using your pivot table. Use the Manage Relationships dialog box
(shown in Figure 5-9) to double-check the relationships. To activate the Manage
Relationships dialog, click inside your pivot table and then choose PivotTable
Analyze ➪ Relationships.

FIGURE 5-18:
You’re ready to

build your pivot
table analysis

based on multiple
external data

tables!

CHAPTER 6 Adding Formulas to Power Pivot 103

Chapter 6
Adding Formulas to
Power Pivot

When analyzing data with Power Pivot, you often find the need to expand
your analysis to include data based on calculations that are not in the
original data set. Power Pivot has a robust set of functions (called DAX

functions) that allow you to perform mathematical operations, recursive calcula-
tions, data lookups, and much more.

This chapter introduces you to DAX functions and provides the ground rules for
building your own calculations in Power Pivot data models.

Enhancing Power Pivot Data with
Calculated Columns

Calculated columns are columns you create to enhance a Power Pivot table with
your own formulas. When you enter calculated columns directly in the Power
Pivot window, they become part of the source data you use to feed your pivot table.
Calculated columns work at the row level. That is to say, the formulas you create

IN THIS CHAPTER

»» Creating, formatting, and hiding your
own calculated columns

»» Creating calculated columns by
using DAX

»» Creating calculated measures

»» Breaking out of pivot tables with
cube functions

104 PART 1 Supercharged Reporting with Power Pivot

in a calculated column perform their operations based on the data in each individ-
ual row. For example, if you have a Revenue column and a Cost column in your
Power Pivot table, you could create a new column that calculates [Revenue] minus
[Cost]. This simple calculation is valid for each row in the data set.

Calculated measures are used to perform more complex calculations that work on
an aggregation of data. These calculations are applied directly to a pivot table,
creating a sort of virtual column that can’t be seen in the Power Pivot window.
Calculated measures are needed whenever you need to calculate based on an
aggregated grouping of rows — for example, the sum of [Year2] minus the sum of
[Year1].

Creating your first calculated column
Creating a calculated column works much like building formulas in an Excel table.
Follow these steps to create a calculated column:

1.	 Open the Power Pivot Formulas.xlsx sample file, activate the Power Pivot
window (by clicking the Manage button on the Power Pivot Ribbon tab),
and then select the InvoiceDetails tab.

In the table, you see an empty column on the far right, labeled Add Column.

2.	 Click on the first blank cell in that column.

3.	 On the Formula bar, enter the following formula (as shown in Figure 6-1):

=[UnitPrice]*[Quantity]

4.	 Press Enter.

The formula populates the entire column, and Power Pivot automatically
renames the column to Calculated Column 1.

5.	 Double-click on the column label and rename the column Total Revenue.

You can rename any column in the Power Pivot window by double-clicking the
column name and entering a new name. Alternatively, you can right-click any
column and choose the Rename option.

You can build calculated columns by clicking instead of typing. For example,
rather than manually enter =[UnitPrice]*[Quantity], you can enter the equal
sign (=), click the UnitPrice column, type the asterisk (*), and then click the
Quantity column. You can also enter your own static data. For example, you can
enter a formula to calculate a 10-percent tax rate by entering =[UnitPrice]*1.10.

CHAPTER 6 Adding Formulas to Power Pivot 105

Each calculated column you create is automatically available in any pivot table
connected to the Power Pivot Data Model. You don’t have to take any action to get
your calculated columns into the pivot table. Figure 6-2 shows the Total Revenue
calculated column in the PivotTable Fields List. These calculated columns can be
used just as you would use any other field in the pivot table.

If you need to edit the formula in a calculated column, find the calculated column
in the Power Pivot window, click the column, and then make changes directly on
the Formula bar.

See Chapter 2 for a refresher on how to create a pivot table from Power Pivot.

Formatting calculated columns
You often need to change the formatting of Power Pivot columns to appropriately
match the data within them. For example, you may want to show numbers as cur-
rency, remove decimal places, or display dates in a certain way.

FIGURE 6-1:
Start the

calculated
column by

entering an
operation on the

Formula bar.

FIGURE 6-2:
Calculated

columns
automatically

show up in the
PivotTable
Fields List.

106 PART 1 Supercharged Reporting with Power Pivot

You’re by no means limited to formatting only calculated columns. The following
steps can be used to format any column you see in the Power Pivot window:

1.	 In the Power Pivot window, click on the column you want to format.

2.	 Go to the Home tab of the Power Pivot window and find the Formatting
group (see Figure 6-3).

3.	 Use the options to alter the formatting of the column as you see fit.

Veteran Excel pivot table users know that changing pivot table number formats
one data field at a time is a pain. One fantastic feature of Power Pivot formatting
is that any format you apply to the columns in the Power Pivot window is auto-
matically applied to all pivot tables connected to the Data Model.

Referencing calculated columns
in other calculations
As with all calculations in Excel, Power Pivot allows you to reference a calculated
column as a variable in another calculated column. Figure 6-4 illustrates this
concept with a new calculated column named Gross Margin. Notice that on the
Formula bar, the calculation is using the following formula:

=[Total Revenue]-([UnitCost]*[Quantity])

FIGURE 6-3:
You can use the
formatting tools

found on the
Power Pivot

window’s Home
tab to format any

column in the
Data Model.

CHAPTER 6 Adding Formulas to Power Pivot 107

Hiding calculated columns from end users
Because calculated columns can reference each other, you can imagine creating
columns simply as helper columns for other calculations. You may not want your
end users to see these columns in your client tools. (In this context, client tools
refers to pivot tables, Power View dashboards, and Power Map.)

Similar to hiding columns on an Excel worksheet, Power Pivot allows you to hide
any column. (It doesn’t have to be a calculated column.) To hide columns, select
the columns you want hidden, right-click the selection, and then choose the Hide
from Client Tools option (as shown in Figure 6-5).

When a column is hidden, it doesn’t show as an available selection in the Pivot-
Table Fields List. However, if the column you’re hiding is already part of the pivot
report (meaning you’ve already dragged it onto the pivot table), hiding the col-
umn doesn’t automatically remove it from the report. Hiding merely affects the
ability to see the column in the PivotTable Fields List.

Note in Figure 6-6 that Power Pivot recolors columns based on their attributes.
Hidden columns are subdued and grayed-out, whereas calculated columns that
are not hidden have a darker (black) header.

FIGURE 6-4:
The new Gross

Margin
calculation is

using the
previously

created [Total
Revenue] and

calculated
column.

FIGURE 6-5:
Right-click and

select Hide from
Client Tools.

108 PART 1 Supercharged Reporting with Power Pivot

To unhide columns, select the hidden columns in the Power Pivot window, right-
click on the selection, and then choose the Unhide from Client Tools option.

Utilizing DAX to Create Calculated
Columns

Data Analysis Expressions, or DAX, is essentially the formula language that Power
Pivot uses to perform calculations within its own construct of tables and columns.
The DAX formula language comes supplied with its own set of functions. Some of
these functions can be used in calculated columns for row-level calculations, and
others are designed to be used in calculated measures to aggregate operations.

In this section, I touch on some of the DAX functions that you can leverage in cal-
culated columns.

The examples of DAX demonstrated in this chapter are meant to give you a sense
of how calculated columns and calculated measures work. You can explore DAX
more fully in Chapter 7.

Identifying DAX functions that are
safe for calculated columns
Earlier in this chapter, you use the Formula bar within the Power Pivot window to
enter calculations. Next to the Formula bar, you may have noticed the Insert
Function button: the button labeled fx. It’s similar to the Insert Function button in
Excel. Clicking this button opens the Insert Function dialog box, shown in
Figure 6-7. Using this dialog box, you can browse, search for, and insert the avail-
able DAX functions.

FIGURE 6-6:
Hidden columns
are grayed-out,
and calculated
columns have

darker headings.

CHAPTER 6 Adding Formulas to Power Pivot 109

As you look through the list of DAX functions, notice that many of them look like
the common Excel functions that most people are familiar with. But make no mis-
take: They aren’t Excel functions. Whereas Excel functions work with cells and
ranges, these DAX functions are designed to work at the table and column levels.

To understand what I mean, start a new calculated column on the Invoice Details
tab. Click on the Formula bar and type a good old SUM function: SUM([Gross
Margin]). The result is shown in Figure 6-8.

As you can see, the SUM function sums the entire column. This is because Power
Pivot and DAX are designed to work with tables and columns. Power Pivot has no
construct for cells and ranges. It doesn’t even have column letters and row num-
bers on its grid. Though you would normally reference a range (as in an Excel SUM
function), DAX basically takes the entire column.

The bottom line is that not all DAX functions can be used with calculated columns.
Because a calculated column evaluates at the row level, only DAX functions that
evaluate single data points can be used in a calculated column.

FIGURE 6-7:
The Insert

Function dialog
box shows you all

available DAX
functions.

FIGURE 6-8:
The DAX SUM

function can only
sum the column

as a whole.

110 PART 1 Supercharged Reporting with Power Pivot

Here’s a good rule of thumb: If the function requires an array or a range of cells as
an argument, it isn’t viable in a calculated column.

So, functions such as SUM, MIN, MAX, AVERAGE, and COUNT don’t work in cal-
culated columns. Functions that require only single data-point arguments work
quite well in calculated columns: functions such as YEAR, MONTH, MID, LEFT,
RIGHT, IF, and IFERROR.

Building DAX-driven calculated columns
To demonstrate the usefulness of employing a DAX function to enhance calculated
columns, let’s return to the walk-through example. Go to the Power Pivot window
and select the InvoiceHeader tab on the Ribbon. If you’ve accidentally closed the
Power Pivot window, you can open it by clicking the Manage command button on
the Power Pivot Ribbon tab.

The InvoiceHeader tab, shown in Figure 6-9, contains an InvoiceDate column.
Although this column is valuable in the raw table, the individual dates aren’t con-
venient when analyzing the data with a pivot table. It would be beneficial to have
a column for Month and a column for Year. This way, you could aggregate and
analyze the data by month and year.

For this endeavor, you use the DAX functions YEAR(), MONTH(), and FORMAT()
to add some time dimensions to the Data Model. Follow these steps:

1.	 In the InvoiceHeader table, click on the first blank cell in the empty
column labeled Add Column, on the far right.

2.	 On the Formula bar, type =YEAR([InvoiceDate]) and then press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

3.	 Double-click on the column label and rename the column Year.

FIGURE 6-9:
DAX functions

can help enhance
the invoice

header data with
Year and Month

time dimensions.

CHAPTER 6 Adding Formulas to Power Pivot 111

4.	 Starting in the next column, click on the first blank cell in the empty
column labeled Add Column, on the far right.

5.	 On the Formula bar, type =MONTH([InvoiceDate]), and then press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

6.	 Double-click on the column label and rename the column Month.

7.	 Starting in the next column, click on the first blank cell in the empty
column labeled Add Column, on the far right.

8.	 On the Formula bar, type =FORMAT([InvoiceDate],”mmm”) and then
press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

9.	 Double-click on the column label and rename the column Month Name.

After completing these steps, you should have three new calculated columns sim-
ilar to the ones shown in Figure 6-10.

As I mention earlier in this chapter, creating calculated columns automatically
makes them available through the PivotTable Fields List (see Figure 6-11).

FIGURE 6-10:
Using DAX

functions to
supplement a

table with Year,
Month, and

Month Name
columns.

FIGURE 6-11:
DAX calculations
are immediately

available in
any connected

pivot table.

112 PART 1 Supercharged Reporting with Power Pivot

Month sorting in Power Pivot–driven
pivot tables
One of the more annoying aspects of Power Pivot is that it doesn’t inherently
know how to sort months. Unlike standard Excel, Power Pivot doesn’t use the
built-in custom lists that define the order of month names. Whenever you create
a calculated column such as [Month Name] and place it into your pivot table,
Power Pivot puts those months in alphabetical order. Figure 6-12 illustrates this
in a pivot table designed to show average revenue by month.

The fix for this problem is fairly easy. Open the Power Pivot window and select the
Home tab. There, click the Sort by Column command button. The Sort by Column
dialog box the opens, as shown in Figure 6-13.

The idea is to select the column you want sorted and then select the column you
want to sort by. In this scenario, you want to sort Month Name by month.

After you confirm the change, it initially appears as though nothing has happened.
The reason is that the sort order you defined isn’t for the Power Pivot window. The
sort order is applied to the pivot table. You can switch over to Excel to see the
result in the pivot table (see Figure 6-14).

Pivot tables based on your data model will first inherit the formatting and sorting
explicitly applied in the data model, then will apply any formatting you set in the
pivot table itself. In other words, any formatting you apply in the pivot table itself
will supersede the formatting and sorting applied via the Power Pivot window.

FIGURE 6-12:
Month names

in Power
Pivot-driven pivot

tables don’t
automatically sort

in month order.

CHAPTER 6 Adding Formulas to Power Pivot 113

Referencing fields from other tables
Sometimes, the operation you’re trying to perform with a calculated column
requires you to utilize fields from other tables within the Power Pivot Data Model.
For example, you may need to account for a customer-specific discount amount
from the Customers table (see Figure 6-15) when creating a calculated column in
the InvoiceDetails table.

FIGURE 6-13:
The Sort by

Column dialog
box lets you
define how

columns are
sorted.

FIGURE 6-14:
The month

names now show
in the correct
month order.

FIGURE 6-15:
The discount

amount in the
Customers table
can be used in a

calculated
column in

another table.

114 PART 1 Supercharged Reporting with Power Pivot

To accomplish this, you can use a DAX function named RELATED. Similar to
VLOOKUP in standard Excel, the RELATED function allows you to look up values
from one table in order to use them in another.

Follow these steps to create a new calculated column that displays a discounted
amount for each transaction in the InvoiceDetails table:

1.	 In the InvoiceDetails table, click on the first blank cell in the empty
column labeled Add Column, on the far right.

2.	 On the Formula bar, type =RELATED(.

As soon as you enter the open parenthesis, a menu of available fields (shown
in Figure 6-16) is displayed. Note that the items in the list represent the table
name followed by the field name in brackets. In this case, you’re interested in
the Customers[Discount Amount] field.

3.	 Double-click the Customers[Discount Amount] field and then press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

4.	 Double-click on the column label and rename the column Discount%.

5.	 Starting in the next column, click on the first blank cell in the empty
column labeled Add Column, on the far right.

6.	 On the Formula bar, type =[UnitPrice]*[Quantity]*(1-[Discount%]) and then
press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

7.	 Double-click on the column label and rename the column Discounted
Revenue.

FIGURE 6-16:
Use the RELATED

function to look
up a field from
another table.

CHAPTER 6 Adding Formulas to Power Pivot 115

The reward for your efforts is a new column that uses the discount percent
from the Customers table to calculate discounted revenue for each transaction.
Figure 6-17 illustrates the new calculated column.

The RELATED function leverages the relationships you defined when creating the
data model to perform the lookup. So, this list of choices contains only the fields
that are available based on the relationships you defined.

Nesting functions
In the example from the preceding section, you first create a Discount% column
using the RELATED function, and then you use that column in another calculated
column to calculate the discount amount.

You don’t necessarily have to create multiple calculated columns to accomplish a
task like this one. You could instead nest the RELATED function into the discount
amount calculation. The following line shows the syntax for the nested
calculation:

=[UnitPrice]*[Quantity]*(1-RELATED(Customers[Discount Amount]))

As you can see, nesting simply means to embed functions within a calculation. In
this case, rather than use the RELATED function in a separate Discount% field,
you can embed it directly into the discounted revenue calculation.

Nesting functions can definitely save time and even improve performance in
larger data models. On the other hand, complicated nested functions can be harder
to read and understand.

FIGURE 6-17:
The final

discount amount
calculated

column using the
Discount%

column from the
Customers table.

116 PART 1 Supercharged Reporting with Power Pivot

Understanding Calculated Measures
You can enhance the functionality of your Power Pivot reports by using a kind of
calculation called a calculated measure. Calculated measures are not applied to the
Power Pivot window like calculated columns. Instead, they’re applied directly to
the pivot table, creating a sort of virtual column that isn’t visible in the Power
Pivot window. You use calculated measures when you need to calculate based on
an aggregated grouping of rows.

Creating a calculated measure
Imagine that you want to show the difference in unit costs between the years 2020
and 2019 for each of your customers. Think about what technically has to be done
to achieve this calculation: You have to figure out the sum of unit costs for 2020,
determine the sum of unit costs for 2019, and then subtract the sum of 2020 from
the sum of 2019. This calculation simply can’t be completed using calculated
columns. Using calculated measures is the only way to calculate the cost variance
between 2020 and 2019.

Follow these steps to create a calculated measure:

1.	 Start with a pivot table created from a Power Pivot Data Model.

The Power Pivot Formulas.xlsx workbook contains the Calculated
Measures tab with a pivot table already created.

2.	 Click the Power Pivot tab on the Excel Ribbon, and choose
Measures  ➪    New Measure.

This step opens the Measure dialog box, shown in Figure 6-18.

3.	 In the Measure dialog box, set the following inputs:

•	 Table name: Choose the table you want to contain the calculated measure
when looking at the PivotTable Fields List. Don’t sweat this decision too
much. The table you select has no bearing on how the calculation works.
It’s simply a preference on where you want to see the new calculation
within the PivotTable Fields List.

•	 Measure name: Give the calculated measure a descriptive name.

•	 Description: Enter a friendly description to document what the calculation
does.

•	 Formula: Enter the DAX formula that will calculate the results of the new
field.

CHAPTER 6 Adding Formulas to Power Pivot 117

In this example, you use the following DAX formula:

=CALCULATE(
SUM(InvoiceDetails[UnitCost]),
YEAR(InvoiceHeader[InvoiceDate])=2020
)

This formula uses the CALCULATE function to sum the Total Revenue
column from the InvoiceDetails table, where the Year column in the
InvoiceHeader is equal to 2020.

•	 Formatting Options: Specify the formatting for the calculated measure
results.

4.	 Click the Check Formula button to ensure that there are no syntax
errors.

If your formula is well formed, you see the message No errors in formula.
If the formula has errors, you see a full description.

5.	 Click the OK button to confirm the changes and close the dialog box.

You see your newly created calculated measure in the pivot table.

6.	 Repeat Steps 2–5 for any other calculated measure you need to create.

In this example, you need a measure to show the 2019 cost:

=CALCULATE(
SUM(InvoiceDetails[UnitCost]),
YEAR(InvoiceHeader[InvoiceDate])=2019
)

FIGURE 6-18:
Creating a new

calculated
measure.

118 PART 1 Supercharged Reporting with Power Pivot

You also need a measure to calculate the variance:

=[2020 Revenue]-[2019 Revenue]

Figure 6-19 illustrates the newly created calculated measures. The calculated
measures are applied to each customer, displaying the variance between their
2020 and 2019 costs. As you can see, each calculated measure is available for
selection in the PivotTable Fields List.

Always attempt to achieve readability by using carriage returns and spaces. In
Figure 6-18, the DAX calculation is entered with carriage returns and spaces. This
is purely for readability purposes. DAX ignores white spaces and isn’t case sensi-
tive, so it’s quite forgiving on how you structure the calculation.

Editing and deleting calculated measures
You may find that you need to either edit or delete a calculated measure. You can
do so by following these steps:

1.	 Click anywhere inside the pivot table, click the Power Pivot tab on the
Excel Ribbon, and choose Measures  ➪    Manage Measures.

This step opens the Manage Measures dialog box, shown in Figure 6-20.

2.	 Select the target calculated measure, and click one of these two buttons:

•	 Edit: Opens the Measure dialog box, where you can make changes to the
calculation setting.

•	 Delete: Opens a message box asking you to confirm that you want to
remove the measure. After you confirm, the calculated measure is
removed.

FIGURE 6-19:
Calculated

measures can
be seen in

the PivotTable
Fields List.

CHAPTER 6 Adding Formulas to Power Pivot 119

Free Your Data with Cube Functions
Cube functions are Excel functions that can be used to access the data in a Power
Pivot Data Model outside the constraints of a pivot table. Although cube functions
aren’t technically used to create calculations themselves, they can be used to free
PowerPivot data so that it can be used with formulas you may have in other parts
of your Excel spreadsheet.

One of the easiest ways to start exploring cube functions is to allow Excel to con-
vert your Power Pivot pivot table into cube functions. The idea is to tell Excel to
replace all cells in the pivot table with a formula that connects back to the Power
Pivot Data Model.

The Power Pivot Formulas.xlsx workbook contains a Cube Functions tab with a
pivot table already created. Place your cursor anywhere inside the pivot table, and
then select PivotTable Analyze ➪   OLAP Tools ➪   Convert to Formulas.

After a second or two, the cells that used to house a pivot table are now homes for
Cube formulas. Figure 6-21 illustrates the cube functions.

FIGURE 6-20:
The Manage

Measures dialog
box lets you edit

or delete your
calculated
measures.

FIGURE 6-21:
These cells are
now a series of

Cube functions.

120 PART 1 Supercharged Reporting with Power Pivot

If your pivot table contains a report filter field, the dialog box shown in Figure 6-22
activates. This dialog box gives you the option of converting your filter drop-down
selectors to Cube formulas. If you select this option, the drop-down selectors are
removed, leaving a static formula.

If you need to have your filter drop-down selectors intact so that you can continue
to change the selections in the filter field interactively, be sure to leave the Con-
vert Report Filters option unchecked when clicking the Convert button.

Now that the values you see are no longer part of a PivotTable object, you can
insert rows and columns, you can add your own calculations, or you can combine
the data with other formulas in your spreadsheet. For instance, in Figure 6-23,
you can see I added two quarter total rows in the middle of the pivot data. I’m only
able to do this because the pivot data is no longer a single PivotTable object.
Instead, each cell is a cube formula that can be moved around like any other
formula.

The bottom line is that cube functions give you the flexibility to free your Power
Pivot data from the confines of a pivot table and then use it in all sorts of ways by
simply moving formulas around.

FIGURE 6-22:
Excel gives you

the option of
converting your

report filter fields.

FIGURE 6-23:
Cube functions

give you the
flexibility of

restructuring
your pivot data
without losing

the link to your
data model.

CHAPTER 7 Diving into DAX 121

Chapter 7
Diving into DAX

This chapter rounds your exploration of Power Pivot with a closer look at the
DAX formula language. In Chapter 6, you use a bit of DAX when exploring
the mechanics of adding your own calculated columns and calculated mea-

sures. Now that you know where DAX expressions fit in your Power Pivot data
model, it’s time to take a dive into DAX.

In this chapter, you gain an understanding of the fundamentals of building DAX
expressions and explore some commonly used DAX functions that will help you
start your DAX journey.

The sample file for this chapter is called Adventure Works.xlsx and can be found
on this book’s companion website at www.dummies.com/go/excelpowerpivot
powerqueryfd2e. The sample file contains a ready-to-use Power Pivot model with
all the data need to follow along in this chapter.

DAX Language Fundamentals
Just like Excel functions, every DAX function outputs a result based on arguments
you provide. The difference is that, in Excel, the arguments you use provide cell
references such as A2:A10, and in DAX, you use table and column names. For
instance, you could use SUM(A2:A10) to get the sum of the given Excel range.
However, a similar DAX formula would look more like the following:

IN THIS CHAPTER

»» Understanding the fundamentals of
the DAX language

»» Looking at filter context

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e
http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

122 PART 1 Supercharged Reporting with Power Pivot

SUM(Sales[OrderQuantity])

Notice I’m using both the table name, Sales, and the column name, [OrderQuan-
tity]. When referencing a column in a DAX function, you always include the table
name. If the name of the table contains a space or special characters, use single
quotes around the table name, like this:

SUM('Internet Sales'[OrderQuantity])

Let’s create a starting measure by following these steps:

1.	 Open the Adventure Works.xlsx file, select the Power Pivot tab on the
Excel Ribbon, and choose Measures ➪   New Measure.

The Measure dialog box, shown in Figure 7-1, appears.

2.	 In the Measure dialog box, set the following inputs:

•	 Table name: Choose the Sales table from the drop-down to ensure you can
easily find your new measure within the PivotTable Field List.

•	 Measure name: Enter Total Revenue as the measure name.

•	 Formula: Enter the following DAX formula:

=SUM(Sales[SalesAmount])

•	 Formatting Options: Choose to format the results as a number with two
decimal places and a thousands separator (refer to Figure 7-1).

FIGURE 7-1:
Creating a new

measure that
calculates Total

Revenue.

CHAPTER 7 Diving into DAX 123

3.	 Click OK to close the dialog box and create your measure.

At this point, you’ll need to create a pivot table to see your new measure in
action.

4.	 Select the Power Pivot tab on the Excel Ribbon and choose the Manage
command.

The Power Pivot window opens.

5.	 Choose Home ➪   PivotTable.

The Create PivotTable dialog box appears.

6.	 Choose the New Worksheet option and click OK.

7.	 Find the Total Revenue measure under the Sales table in the Pivot Table
Field List and place a check mark next to it.

In Figure 7-2, calculated measures have a distinct icon in the Pivot Table Field
List, making it easy to identify them.

Repeat Steps 1 through 3 each time you want to add a new measure to your pivot
table. Take a moment to create a new measure with the following inputs:

»» Table name: Sales.

»» Measure name: Total Units.

»» Formula: Enter the following DAX formula:

=SUM(Sales[OrderQuantity])

»» Formatting Options: Choose to format the results as a whole number with
zero decimal places and a thousand separator (see Figure 7-3).

FIGURE 7-2:
The results

of a calculated
measure can be

seen by adding it
to a pivot table.

124 PART 1 Supercharged Reporting with Power Pivot

DAX allows you to use measures as arguments in other measures. Figure 7-4
illustrates the creation of a new measure called Revenue per Unit using the newly
created measures:

=[Total Revenue]/[Total Units]

FIGURE 7-3:
Creating a new

measure that
will calculate

Total Units.

FIGURE 7-4:
DAX allows you to

use existing
measure as

arguments in
other measures.

CHAPTER 7 Diving into DAX 125

Measure names are encapsulated with brackets but not prefixed with a table name.
This makes it easy to look at your formulas and distinguish measures from col-
umns, because columns will have a table prefix while measure will not.

DAX is not a case-sensitive language, so it’s quite forgiving of uppercase and low-
ercase variances. DAX also ignores spaces so you can freely add carriage returns
and extra spaces to improve the readability of your formulas.

Calculated measures on a pivot table will automatically recalculate when the
underlying data is refreshed, when the pivot table is filtered with a slicer or a
page filter, or when you change the structure of your pivot table. For instance,
Figure 7-5 illustrates how the measures recalculate to show the appropriate
results for the dimensions included in the pivot.

Another handy aspect of measures: They aren’t tied to a particular pivot table.
Calculated measures are created in the Power Pivot data model, which means any
pivot table that uses the internal data model as its source can make use of them.

Using DAX operators
The DAX language allows most of the standard operators you’re accustomed to
using in Excel. In fact, you’ll notice I used a division operator in Figure 7-4.
Table 7-1 lists the operators DAX allows when building your calculated
measures.

FIGURE 7-5:
DAX formulas
recalculate to

show appropriate
results based on
the dimensions
included in the

pivot table.

126 PART 1 Supercharged Reporting with Power Pivot

Applying conditional logic in DAX
DAX enables conditional logic checks through the IF function. Like the IF function
in Excel, the DAX version requires three arguments:

»» The condition to test

»» The value to return if the condition is true

»» The value to return if the condition is false

TABLE 7-1	 DAX Operators
Operator Purpose Example

() Parentheses are used to establish mathematical
order of operations.

([Measure1]+[Measure2])*10

+

–

*

/

^

Mathematical operators are used to define the
operation to be performed.

[Measure1]+[Measure2]

[Measure1]-[Measure2]

[Measure1]*[Measure2]

[Measure1]/[Measure2]

[Measure1]^[Measure2]

=

>

<

Comparison operators are used to evaluate the
contrast between values.

[Measure1]=[Measure2]

[Measure1]<>[Measure2]

[Measure1]>=[Measure2]

& A single ampersand is used to concatenate a
string of values together.

"Total is: " & [Measure1]

AND

&&

The AND logical operator is used to evaluate a
condition between two expressions. DAX allows
the word AND or the use of two ampersands. They
both apply the same behavior.

[Measure1] >100 AND [Measure2] <200

[Measure1] >100 && [Measure2] <200

OR

||

The OR logical operator can be used to evaluate a
condition between two expressions. DAX allows
the word OR or the use of two pipe characters.
They both apply the same behavior.

[Measure1] >0 OR [Measure2] >0

[Measure1] >0 || [Measure2] >0

NOT

!

The NOT logical operation can be used to return a
true or false based on a comparison to a defined
expression. DAX allows the word NOT or the use
of the exclamation point. They both apply the
same behavior.

NOT ([Measure1] = [Measure2])

! ([Measure1] = [Measure2])

CHAPTER 7 Diving into DAX 127

For example, the following DAX formula will return Tier1 if the referenced mea-
sure, Total Revenue, is greater than 100,000; otherwise, Tier2 will be returned:

=IF([Total Revenue] > 100000, "Tier1", "Tier2")

It’s not uncommon to want to return a blank if a logic check fails. In these situa-
tions, you can employ the BLANK function. The following formula performs the
same logic check as the previous formula, except it returns blank if the condition
check fails:

=IF([Total Revenue] > 100000, "Tier1", BLANK())

You can go the other way and check if an expression is blank by using the ISBLANK
function. ISBLANK returns either TRUE or FALSE. As an example, the following
statement checks the Name column in the Customer table for a blank value. If the
name is blank, the word Classifed is returned; otherwise, the customer name is
returned.

=IF(ISBLANK(Customer[Name]), "Classified", Customer[Name])

You may find the need to use nested IF statements to apply multiple conditional
checks in a single measure. DAX allows this in the same way Excel does in tradi-
tional worksheet formulas. This next formula illustrates a nested IF statement
that returns a text label based on the conditional check of the [ListPrice] column
in the Products table:

=IF(Products[ListPrice] > 1000, "A",
 IF(Products[ListPrice] > 500, "B",
 IF(Products[ListPrice] > 100, "C", "D")
)
)

When building larger formulas such as the previous nested IF statement, it’s
often helpful to make use of carriage returns and indentations to improve the
readability of your formula. There is no formatting standard per se. The idea is to
apply formatting that makes it easy for you to read, find errors, and edit as needed.

As useful as nested IF statements can be, they can get unwieldy and difficult to
read when they require many nested layers. In such cases, consider using the
SWITCH function to perform the same complex logic checks in a much cleaner way.

128 PART 1 Supercharged Reporting with Power Pivot

The following formula uses the cleaner SWITCH function to perform the same
operation as the previous nested IF statement:

=SWITCH(
 TRUE(),
 Products[ListPrice] > 1000, "A",
 Products[ListPrice] > 500, "B",
 Products[ListPrice] > 100, "C",
 "D"
)

Finally, DAX offers the IFERROR function to check for an error in an expression
and then return a specified result if an error is encountered. The following exam-
ple uses the IFERROR function to perform the classic check for zero before dividing
two measures. Here, if the operation produces an error, a 0 is returned.

=IFERROR([Total Cost]/[Units Sold],0)

Although it doesn’t quite fit under the umbrella of conditional logic, it’s worth
mentioning the DIVIDE function. The DIVIDE function provides a safe method of
dividing two values without the need to check for potential errors due to a 0 in the
denominator or any such nonsense. Simply enter the numerator, denominator,
and value to return if an error occurs. Here’s a simple example where we’re divid-
ing the [Total Cost] measure by the [Units Sold] measure:

=DIVIDE([Total Cost], [Units Sold],0)

Working with DAX aggregate functions
Aggregate functions live up to their namesake by calculating an aggregated value
from all the records in a given column. DAX offers the obligatory Fab Four of
aggregate functions: SUM, AVERAGE, MIN, and MAX. These functions are used just the
way you think they would be:

=SUM(Sales[Sales Amount])
=AVERAGE(Sales[Sales Amount])
=MIN(Sales[Sales Amount])
=MAX(Sales[Sales Amount])

There are, however, a few points to keep in mind when working with the SUM,
AVERAGE, MIN, and MAX aggregate functions:

CHAPTER 7 Diving into DAX 129

»» They work only on columns that have a numeric or date data type.

»» They ignore any text or blank values in the target column.

»» They only aggregate rows after all filters and slicers have been applied to the
source data. This means the results returned will be an aggregation of only
the rows that met the complete filter context for the pivot table.

Another set of aggregate functions are those that return a count of some sort.
These include the following:

»» COUNT: Returns the count of non-blank numeric or date values in a
given column.

»» COUNTA: Returns the count of all values in a given column regardless of data
type.

»» COUNTBLANK: Returns the count of blank cells in a given column.

»» COUNTROWS: Returns the number of rows in a table.

»» DISTINCTCOUNT: Returns the number of unique values in a given column. If a
value appears more than once, it will be counted only once. It’s worth noting
that DISTINCTCOUNT will count blanks as another unique value, adding 1 to
the count for BLANK.

Exploring iterator functions
and row context
In some situations, you can’t rely on standard aggregation functions to return
correct answers because the math needed only works when applied to individual
rows. To fully understand what this means, take a gander at Figure 7-6.

FIGURE 7-6:
I need a

calculated
measure that

returns
OrderQuantity *
UnitPrice as the

Realized Sales.

130 PART 1 Supercharged Reporting with Power Pivot

For each OrderNumber, I’m showing the [Sum of OrderQuantity] and the [Sum of
UnitPrice]. I need a calculated measure to get [Realized Sales], which is simply
[OrderQuantity]*[UnitPrice].

To save time, I’ve already created a [Realized Sales] measure, which you can
review by selecting the Power Pivot tab on the Excel Ribbon and choosing Mea-
sures ➪   Manage Measures. Select the [Realized Sales] measure and then click the
Edit button to see the dialog box shown in Figure 7-7. The formula being used is:

=Sum(Sales[OrderQuantity])*Sum(Sales[UnitPrice])

As you can see in Figure 7-8, adding the [Realized Sales] measure to the pivot
table shows promising results. The math makes sense for each row, and the
results look accurate. However, you have to consider that this view is at the indi-
vidual OrderNumber level (the most granular you can get with this data). Check
out Figure 7-9 to see what happens when you replace [OrderNumber] with Region.
The [Realize Sales] measure all becomes overly inflated.

The reason for the breakdown is relatively clear if you stop and look at the results.
For the Australia Region, you’re showing 13,345 units sold at a UnitPrice of
9,061,000 each. Well, that simply can’t be true. UnitPrice and OrderQuantity need
to be multiplied at each individual-row level to get an accurate dollar per quantity
before any aggregation is performed.

FIGURE 7-7:
The [Realized

Sales] measure
uses a simple Sum

aggregator
function for

each column.

CHAPTER 7 Diving into DAX 131

In other words, the measure needs to retain what is known as row context. When a
measure retains row context, it sees and can interact with values for each row in
which it performs its intended operation. Unfortunately, the SUM function has no
row context, no insight into individual row data. SUM aggregates all the data in the
specified column without capturing or noticing individual row data.

This is where you turn to iterator functions. Iterator functions, sometimes referred
to as X-functions, are designed to iterate through and perform operations on each
individual row record before aggregating results. The Fab Four aggregate func-
tions have iterator versions of themselves: SUMX, AVERAGEX, MINX, and MAXX.

Iterator functions require two arguments: the table to iterate through and an
expression to apply to each row. As an example, you can use the following formula
(see Figure 7-10):

=SUMX(Sales, Sales[OrderQuantity] * Sales[UnitPrice])

FIGURE 7-8:
The [Realized

Sales] measure
looks good at the

granular
OrderNumber

level.

FIGURE 7-9:
The math falls

apart when you
move to any

granularity above
OrderNumber

(such as Region).

132 PART 1 Supercharged Reporting with Power Pivot

This formula tells the measure to iterate through the Sales table, run
Sales[OrderQuantity] * Sales[UnitPrice] on each row, and then sum all the calcu-
lated products into an aggregated result.

Figure 7-11 demonstrates the difference between the original [Realized Sales]
measure using SUM and the new [Realized PriceX] measure using SUMX.

It’s worth mentioning that X-functions can be used like standard aggregate func-
tions. For instance, the following formulas produce the same result with little to
no difference in performance:

=SUMX(Sales, Sales[Sales Amount])
=SUM(Sales[Sales Amount]

The truth is, you can use iterator functions — SUMX, AVERAGEX, MINX, and so on —
exclusively, without getting into too much trouble.

FIGURE 7-10:
Using the SUMX

function enables
the measure to

retain row
context when

calculating the
defined

expression.

FIGURE 7-11:
The new [Realized

PriceX] measure
remains accurate

now at every
aggregation.

CHAPTER 7 Diving into DAX 133

Understanding Filter Context
Filter context is a topic that eludes most analysts first starting with DAX. It’s a bit
difficult to visualize without an example to work through, so let’s jump in with a
simple scenario.

Imagine you’ve been given the Excel table shown in Figure 7-12 and asked to cal-
culate the sum of Sales Amount for red bikes sold in the Northeast. Before you can
calculate the sum, you need to apply the required filters by using the filter drop-
downs to select the following:

»» [Market]: ’Northeast’

»» [Business Segment]: ’Bikes’

»» [Color]: ’Red’

In a sense, these filter selections change the state of your source data and estab-
lish a new context for your final calculation. The calculation result shown in
Figure 7-13 is accurate for the specific state you put the data in by filtering.

FIGURE 7-12:
You need to

calculate the sum
of Sales Amount

in cell E1, but only
after applying

filters.

FIGURE 7-13:
The resulting

answer is for the
specific filter

context applied.

134 PART 1 Supercharged Reporting with Power Pivot

When you boil away the complexities, filter context can generally be described as
the state of your source data after you’ve applied all needed filters.

In the world of DAX, not only are calculations run against a filter context, but
every cell in a pivot table has its own filter context. Figure 7-14 illustrates this
with a pivot table containing the results of the [Total Revenue] calculated measure
you created at the beginning of this chapter.

You may hear the term query context thrown around DAX circles. Query context is
an alternate term for filters applied via a pivot table as opposed to filters applied
because of a DAX expression. Although Microsoft’s documentation acknowledges
the term query context, most DAX developers don’t make a distinction between
query context and filter context; they refer to all filters applied as the filter context.

Each individual cell in the pivot table represents a different run of the [Total Rev-
enue] measure using that cell’s unique filter context. For instance, because cell E5
has a different filter context than cell E9 does, the [Total Revenue] measure had
to run once for cell E5 and once for cell E9.

When the [Total Revenue] measure was being calculated for cell E5, the Power
Pivot filtered the internal data model on the dimensions defined in that cell’s fil-
ter context. The relationships between each table automatically propagated the
applied filtering from the one to the many side of the one-to-many relationship.
Said another way, the filter context flowed in the direction of the arrows (see
Figure 7-15). For instance, filtering the Products table on the [Category] column
will automatically filter the Sales table because the arrow flows from Products to
Sales. After all the necessary filtering is applied, the [Total Revenue] column ran
the math on the data model in its filtered state and output the result to cell E5.

FIGURE 7-14:
Each cell in a

pivot table
contains its own

filter context.

CHAPTER 7 Diving into DAX 135

Getting context transitions with
the CALCULATE function
The CALCULATE function is what is known as a context transition function. Context
transition, in this capacity, essentially means overriding the current filter context
and defining a new one. With the CALCULATE function, you can create DAX mea-
sures that supplement existing pivot data by including data in a completely dif-
ferent filter context.

The CALCULATE function requires, at a minimum, a measure expression that can
be evaluated to a result. The following formula calculates the sum of Sales Amount
but won’t do much in the way of defining a new filter context until you add
conditions.

=CALCULATE(SUM(Sales[SalesAmount]))

Adding a condition to the CALCULATE function adds utility to your measure and
establishes a new filter context. In this formula, you added a condition asking for
the sum of sales for the Bikes product category.

=CALCULATE(
 SUM(Sales[SalesAmount]),
 Products[Category] = "Bikes"
)

FIGURE 7-15:
Filter context is

propagated
between tables

via relationships
in the direction of

the arrows.

136 PART 1 Supercharged Reporting with Power Pivot

As always, you can use existing measures as the CALCULATE expression argument.
Here, I’m using the [Total Revenue] measure created at the beginning of this
chapter:

=CALCULATE(
 [Total Revenue],
 Products[Category] = "Bikes"
)

I used the CALCULATE formula to create a new measure called [Bike Sales] and
added it to a pivot table with the [Total Revenue] measure. The new [Bike Sales]
measure has its own product category filter context and won’t respond to the cat-
egory filter of the pivot table. Notice in Figure 7-16 that the figures for [Bikes
Sales] don’t change in the pivot table even when a new Product Category is selected
in the slicer.

FIGURE 7-16:
The [Bike Sales]
measure has its

own product
category context,

so it doesn’t
respond to the

pivot slicer.

CHAPTER 7 Diving into DAX 137

You can add as many conditions to the CALCULATE function as you’d like. The fol-
lowing formula adds to the filter context of [Bike Sales] by adding a condition for
Fiscal Year:

=CALCULATE(
 SUM(Sales[SalesAmount]),
 Products[Category] = "Bikes",
 'Calendar'[Fiscal Year] = 2020
)

Adding flexibility with the FILTER function
The FILTER function returns a table of values that meet a specified condition. For
example, the following expression returns a table of Products where the [Dealer-
Price] is less than the [StandardCost].

=FILTER(Products,

 DIVIDE(Products[DealerPrice],Products[StandardCost])<1

)

The FILTER function works like an iterator function, iterating through the rows
of the specified table (Products, in this case) and evaluating whether each row
meets the specified condition. Rows that meet the condition are output in the table
result.

The resulting table can be used in conjunction with other DAX functions to create
a targeted filter context based on your defined conditions. In this case, you can use
the previous FILTER expression with CALCULATE. The following formula does just
that.

First, the FILTER function creates a table of Products where the [DealerPrice] is
less than the [StandardCost]. The CALCULATE function then uses the resulting
table to get the sum of sales for all the products in the FILTER table results.

=CALCULATE(SUM(Sales[SalesAmount]),

 FILTER(Products,

 DIVIDE(Products[DealerPrice],Products[StandardCost])<1

)

)

138 PART 1 Supercharged Reporting with Power Pivot

In Figure 7-17, you can see I used the CALCULATE and FILTER formula to create a
new measure called LowProfitSales. Then I added it to a pivot table.

With some basic formula building, you’ve been able to exert a good bit of
control over new measures and how they respond to the filter context of your
reporting.

WHERE TO GO FROM HERE
DAX is a huge topic that goes well beyond the scope of this book. Hopefully, the basic
concepts in this chapter will inspire you to pursue DAX a little further. Yes, DAX is a jour-
ney of time and practice, but the good news is that there are plenty of resources out
there that can help you on your path. Here are some resources that you can leverage as
you continue delving into DAX:

•	Chris Webb’s BI Blog (https://blog.crossjoin.co.uk/category/dax): Chris
Webb’s blog is focused on helping people make sense of their business data with
Power Query and Power Pivot. With several years’ worth of articles, Chris’s blog is a
rich source for DAX concepts.

•	 Excelerator BI (https://exceleratorbi.com.au): Matt Allington’s website is a
rich vein for articles on the latest Power BI trends. Check it out for a wide array of
DAX-related tutorials.

•	P3 Adaptive (https://p3adaptive.com): Rob Collie has been in the DAX world
since its arrival in 2010. He has a knack for explaining the ins and outs of DAX from
the perspective of Excel analysts. Rob’s blog offers hundreds of excellent articles
and tutorials.

•	RADACAD (https://radacad.com): RADACAD is a group founded by Reza Rad.
Reza and his team offer training to those who are looking to build their DAX mus-
cles. RADACAD also publishes a free newsletter every month, keeping readers up to
date with all the new changes in the Power Pivot realm.

•	 SQLB: How to Learn DAX (www.sqlbi.com/guides/dax): Alberto Ferrari and
Marco Russo have helped countless Excel analysts make the leap into DAX. With a
generous number of articles and examples, their website is a must for anyone
learning DAX.

https://blog.crossjoin.co.uk/category/dax
https://exceleratorbi.com.au/
https://p3adaptive.com/
https://radacad.com/
https://www.sqlbi.com/guides/dax

CHAPTER 7 Diving into DAX 139

FIGURE 7-17:
Using CALCULATE

and FILTER
together to

establish a new
filter context.

2Wrangling
Data with
Power Query

IN THIS PART . . .

Discover the fundamentals of using Power Query to
import and process data from various data sources.

Connect to external data sources using Power Query.

Explore Power Query tools and formulas that can
automate and simplify your data-transformation
processes.

Uncover methods of merging and appending multiple
queries to go beyond simple data imports.

Get the skinny on creating your own custom functions to
extend the functionality of Power Query.

CHAPTER 8 Introducing Power Query 143

Chapter 8
Introducing Power
Query

In information management, the term ETL (Extract, Transform, Load) refers to
the three separate functions typically required to integrate disparate data
sources: extract, transform, and load. The extraction function refers to the

reading of data from a specified source and extracting a desired subset of data. The
transformation function refers to the cleaning, shaping, and aggregating of data
to convert it to the desired structure. The loading function refers to the actual
importing or writing of the resulting data to a target location.

Excel analysts have been manually performing ETL processes for years — although
they rarely call it ETL. Every day, millions of Excel users manually pull data from
a source location, manipulate that data, and integrate it into their reporting. This
process requires lots of manual effort.

Power Query enhances the ETL experience by offering an intuitive mechanism to
extract data from a wide variety of sources, perform complex transformations on
that data, and then load the data into a workbook or the Internal Data Model.

In this chapter, you explore the basics of the Power Query Add-in. You also get a
glimpse of how it can help you save time and automate the steps needed to ensure
that clean data is imported into your reporting models.

IN THIS CHAPTER

»» Spelling out the Power Query basics

»» Understanding Query steps

»» Managing existing queries

»» Overviewing query actions

144 PART 2 Wrangling Data with Power Query

Power Query Basics
In this section, I walk you through a simple example of using Power Query.
Imagine that you need to import Microsoft Corporation stock prices from the past
30 days by using Yahoo! Finance. For this scenario, you need to perform a web
query to pull the data you need from Yahoo! Finance.

Starting the query
To start the query, follow these steps:

1.	 In Excel, select the Get Data command in the Get & Transform Data group
on the Data tab and then choose From Other Sources ➪ From Web (see
Figure 8-1).

2.	 In the dialog box that appears, enter the URL for the data you need, as
shown in Figure 8-2.

In this example, you type http://finance.yahoo.com/q/hp?s=MSFT.

After a bit of gyrating, the Navigator dialog box shown in Figure 8-3 appears.
You can select the data source that you want to extract. Click on each table to
see a preview of the data.

FIGURE 8-1:
Starting a Power

Query web query.

http://finance.yahoo.com/q/hp?s=MSFT

CHAPTER 8 Introducing Power Query 145

3.	 In this case, Table 0 holds the historical stock data you need, so click
Table 0 in the list box on the left and then click the Transform Data
button.

You may have noticed that the Navigator dialog box, shown in Figure 8-3,
offers a Load button (next to the Transform Data button). You can use this
button to skip any editing and import your targeted data as is. If you’re sure
that you won’t need to transform or shape your data in any way, click the Load
button to import the data directly into the data model or a spreadsheet in your
workbook.

Excel has another From Web command button, on the Data tab in the Get
External Data group. This unfortunate duplicate command is the legacy
web-scraping capability found in all Excel versions since Excel 2000. The
Power Query version of the From Web command (found under the Get Data
drop-down) goes beyond simple web scraping. Power Query is able to pull

FIGURE 8-2:
Enter the target
URL containing

the data
you need.

FIGURE 8-3:
Select the correct

data source and
then click the

Transform Data
button.

146 PART 2 Wrangling Data with Power Query

data from advanced web pages, and it can manipulate the data. Make sure
you’re using the correct feature when pulling data from the web.

When you click the Transform Data button, Power Query activates a new
Query Editor window, which contains its own Ribbon and a preview pane that
shows a preview of the data (see Figure 8-4). You can apply certain actions to
shape, clean, and transform the data before importing.

The idea is to work with each column shown in the Query Editor, applying the
necessary actions that will give you the data and structure you need. You can
dive deeper into column actions later in this chapter. For now, continue toward
the goal of getting the last 30 days of stock prices for Microsoft Corporation.

4.	 Click the High field and then hold down the Ctrl key on your keyboard
while you click the Low field and the Close fields.

5.	 Right-click and choose Change Type ➪ Currency, as shown in Figure 8-5.

This ensures that the Date field is formatted as a proper date. Power Query will
ask if you want to replace the current step or add a new step.

6.	 Choose Add a New Step.

7.	 Remove all unnecessary columns by right-clicking each one and selecting
Remove.

(Besides the Date field, the only other columns you need are the High, Low,
and Close fields.)

FIGURE 8-4:
The Query Editor

window allows
you to shape,

clean, and
transform data.

CHAPTER 8 Introducing Power Query 147

Alternatively, you can hold down the Ctrl key on the keyboard, select the
columns you want to keep, right-click any selected column, and then choose
Remove Other Columns (see Figure 8-6).

You may notice that some of the rows show the word Error. These are rows
that contained text values that could not be converted.

8.	Remove the Error rows by right-clicking the High field and selecting
Remove Errors, as shown in Figure 8-7.

9.	After all the errors are removed, right-click the Date field and select the
Duplicate Column option.

A new column (named Date -Copy) is added to the preview.

10.	Right-click the newly added column, select the Rename option, and then
rename the column Week Of.

11.	Right-click the Week Of column you just created and choose
Transform ➪ Week ➪ Start of Week, as shown in Figure 8-8.

Excel transforms the date to display the start of the week for a given date.

FIGURE 8-5:
Change the data
type of the High,

Low, and Close
fields to currency

format.

FIGURE 8-6:
Select the

columns you
want to keep, and

then select
Remove Other

Columns to get
rid of them.

148 PART 2 Wrangling Data with Power Query

12.	When you’ve finished configuring your Power Query feed, click the Close &
Load drop-down found on the Home tab of the Power Query Editor to
reveal the two options shown in Figure 8-9:

•	 Close & Load: Saves your query and outputs the results to a new worksheet
in your workbook as an Excel table. You can choose the Close & Load To
option to activate the Import Data dialog box (see Figure 8-9). There, you
can choose to output the results to a specific worksheet or to the internal
data model.

FIGURE 8-7:
Removing errors

caused by text
values that could
not be converted

to currency.

FIGURE 8-8:
The Power Query

Editor can be
used to apply

transformation
actions such as

displaying the
start of the week
for a given date.

CHAPTER 8 Introducing Power Query 149

•	 Close & Load To: Activates the Import Data dialog box (see Figure 8-9).
There, you can choose to output the results to a specific worksheet. The
Import Data dialog box also enables you to save the query as a query
connection only, which means you’ll be able to use the query in various
processes without needing to output the results anywhere.

13.	Select the New Worksheet option button to output your results as a table
on a new worksheet in the active workbook.

At this point, you have a table similar to the one shown in Figure 8-10, which can
be used to produce the pivot table you need.

FIGURE 8-9:
The Import Data
dialog box gives

you more control
over how the

results of queries
are used.

FIGURE 8-10:
Your final query

pulled from
the internet:

transformed, put
into an Excel

table, and
ready to use in a

pivot table.

150 PART 2 Wrangling Data with Power Query

Take a moment to appreciate what Power Query allowed you to do just now. With
a few clicks, you searched the internet, found some base data, shaped the data to
keep only the columns you needed, and even manipulated that data to add an extra
Week Of dimension to the base data. This is what Power Query is about: enabling
you to easily extract, filter, and reshape data without the need for any program-
matic coding skills.

You can get back to the Power Query Editor window for any query by activating the
Queries & Connections task pane. On the Excel Ribbon, choose Data ➪ Queries &
Connections. From here, you can simply right-click a query and select Edit.

Understanding query steps
Power Query uses its own formula language (known as the “M” language) to cod-
ify your queries. As with macro recording, each action you take when working
with Power Query results in a line of code being written into a query step. Query
steps are embedded M code that allow your actions to be repeated each time you
refresh your Power Query data.

To explore this concept, open the Power Query Editor for the table you just cre-
ated. Right-click anywhere in the table shown in Figure 8-10 and choose
Table ➪ Edit Query. You can see the query steps for your queries in the Query
Settings pane (see Figure 8-11).

FIGURE 8-11:
You can view
and manage

query steps in
the Applied

Steps section
of the Query

Settings pane.

CHAPTER 8 Introducing Power Query 151

Each query step represents an action you took to get to a data table. You can click
on any step to see the underlying M code in the Power Query formula bar. For
example, clicking the step called Removed Errors reveals the code for that step in
the formula bar.

If you don’t see the Query Settings pane, click the Query Settings command on the
View tab of the Power Query Editor Ribbon. The View tab also contains the For-
mula Bar check box, allowing you to expose Formula bar that displays the M syn-
tax for each given step.

When you click on a query step, the data shown in the preview pane shows you
what the data looked like up to and including the step you clicked. For example, in
Figure 8-11, clicking the step before the Removed Other Columns step lets you see
what the data looked like before you removed the non-essential columns.

You can right-click on any step to see a menu of options for managing your query
steps. Figure 8-12 illustrates the following options:

»» Edit Settings: Edit the arguments or parameters that defines the
selected step.

»» Rename: Give the selected step a meaningful name.

»» Delete: Remove the selected step. Be aware that removing a step can cause
errors if subsequent steps depend on the deleted step.

»» Delete Until End: Remove the selected step and all following steps.

»» Insert Step After: Insert a step after the selected step.

»» Move Up: Move the selected step up in the order of steps.

»» Move Down: Move the selected step down in the order of steps.

»» Extract Previous: Create a new query using the steps prior to the selected
step. This feature is covered in Chapter 11.

VIEWING THE ADVANCED QUERY EDITOR
Power Query gives you the option to view and edit a query’s embedded M code directly.
While in the Power Query Editor, click the View tab on the Ribbon and select Advanced
Editor. The Advanced Editor dialog box is little more than a space for you to type your
own M code. Advanced users can use the M language to extend the capabilities of
Power Query by directly coding their own steps in the Advanced Editor. I touch on the
M language in Chapter 12 of this book.

152 PART 2 Wrangling Data with Power Query

Refreshing Power Query data
Power Query data is in no way connected to the source data used to extract it.
A Power Query data table is merely a snapshot. In other words, as the source data
changes, Power Query doesn’t automatically keep up with the changes; you need
to intentionally refresh your query.

If you chose to load your Power Query results to an Excel table in the existing
workbook, you can manually refresh by right-clicking on the table and selecting
the Refresh option.

If you chose to load your Power Query data to the internal data model, you need to
choose Data ➪ Queries & Connections and then right-click the target query and
select the Refresh option.

To get a bit more automated with the refreshing of queries, you can configure your
data sources to automatically refresh the Power Query data. To do so, follow these
steps:

1.	 Select the Data tab in the Excel Ribbon, and click the Queries &
Connections command.

The Queries & Connections task pane appears.

2.	 Right-click the Power Query data connection you want to refresh and
then select the Properties option.

The Properties dialog box opens.

3.	 Select the Usage tab.

FIGURE 8-12:
Right-click on any

query step to
edit, rename,

delete, or move
the step.

CHAPTER 8 Introducing Power Query 153

4.	 Set the options to refresh the chosen data connection:

•	 Refresh Every X Minutes: Tells Excel to automatically refresh the chosen data
every specified number of minutes. Excel refreshes all tables associated
with that connection.

•	 Refresh Data When Opening the File: Tells Excel to automatically refresh the
chosen data connection after opening the workbook. Excel refreshes all
tables associated with that connection as soon as the workbook is opened.

These refresh options are useful when you want to ensure that your customers are
working with the latest data. Of course, setting these options does not preclude
the ability to manually refresh the data using the Refresh command on the
Home tab.

Managing existing queries
As you add various queries to a workbook, you need a way to manage them. Excel
accommodates this need by offering the Queries & Connections task pane, which
enables you to edit, duplicate, refresh, and generally manage all existing queries
in the workbook.

Open the Queries & Connections task pane by selecting the Show Queries & Con-
nections command on the Data tab of the Excel Ribbon. Find the query you want
to work with, and right-click it to take any one of the actions described in the
following list (see Figure 8-13):

»» Edit: Open the Query Editor, where you can modify the query steps.

»» Delete: Delete the selected query.

»» Refresh: Refresh the data in the selected query.

»» Load To: Activate the Import Data dialog box, where you can redefine where
the selected query’s results are used.

»» Duplicate: Create a copy of the query.

»» Reference: Create a new query that references the output of the original
query.

»» Merge: Merge the selected query with another query in the workbook by
matching specified columns.

»» Append: Append the results of another query in the workbook to the
selected query.

154 PART 2 Wrangling Data with Power Query

»» Send to Data Catalog: Publish and share the selected query via a Microsoft
Power BI server that your IT department sets up and manages.

»» Export Connection File: Save an Office Data Connection (.odc) file with the
connection credentials for the query’s source data.

»» Move to Group: Move the selected query into a logical group that you create
for better organization.

»» Move Up: Move the selected query up in the Queries & Connections pane.

»» Move Down: Move the selected query down in the Queries & Connections
pane.

»» Show the Peek: Show a preview of the query results for the selected query.

»» Properties: Rename the query and add a friendly description.

The Queries & Connections pane is especially useful when your workbook contains
several queries. Think of it as a kind of table of contents that allows you to easily
find and interact with the queries in your workbook.

FIGURE 8-13:
Right-click any

query in the
Queries &

Connections pane
to see the
available

management
options.

CHAPTER 8 Introducing Power Query 155

Understanding Column-Level Actions
Right-clicking a column in the Power Query Editor activates a shortcut menu that
shows a full list of the actions you can take. You can also apply certain actions to
multiple columns at one time by selecting two or more columns before right-
clicking. Table 8-1 explains the commands you see when right-clicking a column
within the Power Query Editor.

TABLE 8-1	 Column-Level Actions

Action Purpose
Available with
Multiple Columns?

Remove Remove the selected column from the Power Query data. Yes

Remove Other
Columns

Remove all non-selected columns from the Power Query data. Yes

Duplicate Column Create a duplicate of the selected column as a new column
placed on the far right end of the table. The name given to the
new column is Copy of X, where X is the name of the original
column.

No

Add Column from
Examples

Similar to Excel’s Flash Fill feature, this command creates data
in a new column from examples you provide. Power Pivot
automatically fills in data when it senses a pattern.

Yes

Remove
Duplicates

Remove all rows from the selected column where the values
duplicate earlier values. The row with the first occurrence of a
value isn’t removed.

Yes

Remove Errors Remove rows containing errors in the selected column. Yes

Change Type Change the data type of the selected column to any of these
types: Binary, Date, Date/Time, Date/Time/Timezone, Duration,
Number, Currency, Decimal Number, Whole Number, Percent-
age, Text, Time, or Using Locale (which localizes data types to
the country you specify).

Yes

Transform Change the way values in the column are rendered. You can
choose from the following options: Lowercase, Uppercase,
Capitalize Each Word, Left, Trim, Clean, and Length. If the val-
ues in the column are date/time values, the options are Date,
Time, Day, Month, Year, or Day of Week. If the values in the
column are number values, the options are Round, Absolute
Value, Factorial, Base-10 Logarithm, Natural Logarithm, Power,
and Square Root.

Yes

(continued)

156 PART 2 Wrangling Data with Power Query

TABLE 8-1 (continued)

Action Purpose
Available with
Multiple Columns?

Replace Values Replace one value in the selected column with another speci-
fied value.

Yes

Replace Errors Replace unsightly error values with your own, friendlier text. Yes

Create Data Type Stores multiple columns of data in one column as metadata,
allowing you to expose all the data you need without taking up
space in your worksheet. Excel formulas can interact with
these rich data types to expose the stored data within.

Yes

Group By Aggregate data by row values. For example, you can group by
state and either count the number of cities in each state or
sum the population of each state.

Yes

Fill Fill empty cells in the column with the value of the first non-
empty cell. You have the option to fill up or fill down.

Yes

Unpivot Other
Columns

Transpose the unselected columns from column-oriented to
row-oriented or vice versa.

Yes

Unpivot Selected
Columns

Transpose the selected columns from column oriented to row
oriented or vice versa.

Yes

Rename Rename the selected column to a name you specify. No

Move Move the selected column to a different location in the table.
You have these choices for moving the column: Left, Right, To
Beginning, and To End.

Yes

Drill Down Navigate to the contents of the column. This option is used
with tables that contain metadata representing embedded
information.

No

Add as New Query Create a new query with the content of the column, by refer-
encing the original query in the new one. The name of the new
query is the same as the column header of the selected
column.

No

Split Column (Rib-
bon only)

Split the value of a single column into two or more columns,
based on a number of characters or a given delimiter, such as
a comma, semicolon, or tab.

No

Merge Column
(Ribbon only)

Merge the values of two or more columns into a single column
that contains a specified delimiter, such as a comma, semico-
lon, or tab.

Yes

CHAPTER 8 Introducing Power Query 157

All column-level actions available in Power Query are also available on the Query
Editor Ribbon, so you can either choose the convenience of right-clicking to
quickly select an action or use the more visual Ribbon menu. A few useful column-
level actions are found only on the Ribbon, as described in Table 8-1.

Understanding Table Actions
While you’re in the Query Editor, Power Query lets you apply certain actions to an
entire data table. You can see the available table-level actions by clicking the Table
Actions icon, shown in Figure 8-14.

Table 8-2 lists the more commonly used table-level actions and describes the
primary purpose of each one.

All table-level actions available in Power Query are also available on the Power
Query Editor Ribbon, so you can either choose the convenience of right-clicking to
quickly select an action or use the more visual Ribbon menu.

FIGURE 8-14:
Click the Table
Actions icon in
the upper-left
corner of the
Query Editor

Preview pane
to see the

 table-level
actions you can

use to transform
the data.

158 PART 2 Wrangling Data with Power Query

TABLE 8-2	 Table-Level Actions
Action Purpose

Use First Row as
Headers

Replace each table header name with the values in the first row of each column.

Add Custom
Column

Insert a new column after the last column of the table. The values in the new column are
determined by the value or formula you define.

Add Column
from Example

Similar to Excel’s Flash Fill feature, this command creates data in a new column from
examples you provide. Power Pivot automatically fills in data when it senses a pattern.

Add Conditional
Column

Insert a new column that contains the results of a specified IF...THEN...ELSE
statement.

Add Index
Column

Insert a new column containing a sequential list of numbers starting from 1, 0, or
another specified value you define.

Choose Columns Choose the columns you want to keep in the query results.

Keep Top Rows Remove all but the top N number of rows. You specify the number threshold.

Keep Bottom
Rows

Remove all but the bottom N number of rows. You specify the number threshold.

Keep Range of
Rows

Remove all rows except the ones that fall within a range you specify.

Keep Duplicates Remove all but duplicated rows.

Keep Errors Remove all but duplicated rows with error values.

Remove Top
Rows

Remove the top N rows from the table.

Remove Bottom
Rows

Remove the bottom N rows from the table.

Remove Alter-
nate Rows

Remove alternate rows from the table, starting at the first row to remove and specifying
the number of rows to remove and the number of rows to keep.

Remove
Duplicates

Remove all rows where the values in the selected columns duplicate earlier values. The
row with the first occurrence of a value set isn’t removed.

Remove Errors Remove rows containing errors in the selected columns.

Merge Queries Create a new query that merges the current table with another query in the workbook
by matching specified columns.

Append Queries Create a new query that appends the results of another query in the workbook to the
current table.

CHAPTER 9 Power Query Connection Types 159

Chapter 9
Power Query
Connection Types

Microsoft has invested a great deal of time and resources in ensuring that
Power Query has the ability to connect to a wide array of data sources.
Whether you need to pull data from an external website, a text file, a

database system, Facebook, or a web service, Power Query can accommodate
most, if not all, of your source data needs.

You can see all available connection types by clicking on the Get Data drop-down
arrow on the Data tab of the Excel Ribbon. Power Query offers the ability to pull
from a wide array of data sources, as described in this list:

»» From File: Pulls data from specified Excel files, text files, CSV files, XML files,
or folders

»» From Database: Pulls data from a database such as Microsoft Access, SQL
Server, or SQL Server Analysis Services

»» From Azure: Pulls data from Microsoft’s Azure Cloud service

»» From PowerBI: Pulls data from PowerBI data sets made available through
your organization’s PowerBI service.

IN THIS CHAPTER

»» Extracting data from files

»» Getting data from external databases

»» Importing from other nonstandard
data systems

»» Understanding the Data Profiling
feature

160 PART 2 Wrangling Data with Power Query

»» From Online Services: Pulls data from online software-as-a-service (SaaS)
applications such as Salesforce.com, Microsoft Dynamics 365, and SharePoint
lists

»» From Other Sources: Pulls data from a wide array of internet, cloud, and
other ODBC data sources

In this chapter, I help you explore the various connection types that can be lever-
aged to import external data.

Importing Data from Files
Organizational data is often stored in files such as text files, CSV files, and even
other Excel workbooks. It’s not uncommon to use these kinds of files as data
sources for data analysis. Power Query offers several connection types that enable
the importing of data from external files.

The files you import don’t necessarily have to be on your own PC. You can import
files on network drives as well as in cloud repositories such as Google Drive and
Microsoft OneDrive.

Getting data from Excel workbooks
You can import data from other Excel workbooks by selecting Data ➪ Get
Data ➪ From File ➪ From Workbook from the Excel Ribbon.

Excel opens the Import Data dialog box where you can browse for the Excel file
you want to work with. Note that you can import any kind of Excel file, including
macro-enabled workbooks and template workbooks.

After you’ve selected a file, the Navigator pane activates (see Figure 9-1), showing
you all the data sources available in the workbook.

The idea here is to select the data source you want and then either load or trans-
form the data using the buttons at the bottom of the Navigator pane. Click the
Load button to skip any editing and import your targeted data as is. Click the
Transform Data button if you want to transform or shape the data before com-
pleting the import.

CHAPTER 9 Power Query Connection Types 161

In terms of Excel workbooks, a data source is either a worksheet or a defined named
range. The icons next to each data source let you distinguish which sources are
worksheets and which are named ranges. In Figure 9-1, the source named
MyNamedRange is a defined named range, and the source named National Parks
is a worksheet.

You can import multiple sources at a time by selecting the Select Multiple Items
check box and then placing a check mark next to each worksheet and named range
that you want imported.

Power Query won’t bring in charts, pivot tables, shapes, VBA code, or any other
objects that may exist within a workbook. Power Query simply imports the data
found in the used cell ranges of the workbook.

Getting data from CSV and text files
Text files are commonly used to store and distribute data because of their inherent
ability to hold many thousands of bytes of data without having an inflated file
size. Text files can do this by foregoing all the fancy formatting, leaving only the
text.

A comma-separated value (CSV) file is a kind of text file that contains commas to
delimit (separate) values into columns of data.

To import a text file, select Data ➪   Get Data ➪   From File ➪   From Text/CSV on the
Excel Ribbon. Excel opens the Import Data dialog box, where you can browse for,
and select, a text or CSV file.

FIGURE 9-1:
Select the data

sources you want
to work with, and

then click the
Load button.

162 PART 2 Wrangling Data with Power Query

Power Query opens the dialog box shown in Figure 9-2. Here, you can preview the
contents and specify how the file should be imported. Note the drop-down options
at the top of the dialog:

»» File Origin: Define what encoding standards to use. This option is useful
when handling data that comes from different regions of the world.

»» Delimiter: Specify how the contents are delimited (separated). Some text files
are tab delimited, meaning they contain tab characters that separate text
values into columns of data. Other text files are comma delimited, while
others still are delimited by another character such as a space or a colon. Use
the Delimiter drop-down to tell Power Query which delimiter to look for when
separating values into columns.

»» Data Type Detection: When you import text files, Power Query will use the
first 200 rows to guess the data types for each of the columns in the data. For
instance, if the first 200 rows of a particular column are made up of numbers,
Power Query will automatically change the data type of that column to
numeric after importing the file. The Data Type Detection drop-down allows
you to tell Power Query to analyze the entire file (as opposed to the first 200
rows) when guessing the data types. You also have the option of telling Power
Query not to change any data types.

Click the Load button to import the data directly into your workbook. Click the
Transform Data button to bring the data source into the Query Editor, where you
can apply your edits and then click the Close & Load command to complete the
import.

FIGURE 9-2:
Preview the data

and use the
option drop-

down menus to
tell Power Query

how to import
the data.

CHAPTER 9 Power Query Connection Types 163

Getting data from PDF files
Power Query now offers the ability to import data from PDFs. You can access PDF
data by going to the Excel Ribbon and choosing Data ➪   Get Data ➪   From File ➪   From
PDF. The Import Data dialog box appears, allowing you to browse for your target
PDF. After a few seconds, the Navigator dialog box, shown in Figure 9-3, opens,
showing you the available tables and pages found in your chosen file.

Notice that both structured tables and pages are shown, allowing you the option
of importing a specific table or an entire page from the PDF. Simply click the item
you want to import and then click the Load button to import directly into your
workbook or click the Transform Data button to clean the source data before
importing.

You can even import multiple items from your PDFs by placing a selecting the
Select Multiple Items check box (see Figure 9-3).

Rarely does the data from a PDF come in clean. You’ll almost always need to click
the Transform Data button in order to clean up column names, remove empty
spaces, and generally remove unwanted data elements.

FIGURE 9-3:
The available

tables and pages
in the PDF are

shown in the
Navigator

dialog box.

164 PART 2 Wrangling Data with Power Query

Getting data from folders
Power Query has the ability to use the Windows file system as a data source,
enabling you to import a list of folder contents for a specified directory. This
comes in handy when you need to create a list of all the files in a particular folder.

From the Excel Ribbon, select Data ➪   Get Data ➪   From File ➪   From Folder. After
you browse for the folder (directory) you want to use, the dialog box shown in
Figure 9-4 opens.

The incoming data contains a row for each file contained inside the folder, includ-
ing any files in subfolders. Click the Load button to import the data directly into
your workbook. Click the Transform Data button to bring data source into the
Query Editor.

In the Power Query Editor (see Figure 9-5), you’ll see the imported table details
the key attributes for each file, such as filename, file extension, date created, and
date modified. You can even click the Expand icon in the Attributes field and
choose to display some of the more advanced attributes for each file.

After you have all the attributes you need, you can click the Close & Load com-
mand on the Home tab to complete the import.

The files that are listed include all files contained in subfolders inside the folder
you specified. Unfortunately, the resulting output is not hyperlinked back to the
actual folder contents. In other words, you can’t open the individual files from the
query table.

FIGURE 9-4:
Data preview of

the files in the
target folder.

CHAPTER 9 Power Query Connection Types 165

Importing Data from Database Systems
In smart organizations, the task of data management is not performed by Excel;
rather, it’s performed primarily by database systems such as Microsoft Access and
SQL Server. Databases like these not only store millions of rows of data, but also
ensure data integrity and allow for the rapid search and retrieval of data by way of
queries and views.

A connection for every database type
Power Query offers options to connect to a wide array of database types. Microsoft
has been keen to add connection types for as many commonly used databases as
it can.

Relational and OLAP databases
Choose Data ➪   Get Data ➪   From Database and you see the list of databases shown
in Figure 9-6. Power Query has the ability to connect to virtually any database
commonly used today: SQL Server, Microsoft Access, Oracle, MySQL, and so forth.

Azure databases
If your organization has a Microsoft Azure cloud database or a subscription to
Microsoft Azure Marketplace, an entire set of connection types is designed to
import data from Azure databases (see Figure 9-7). You can get to these connec-
tion types by choosing Data ➪   Get Data ➪   From Azure.

FIGURE 9-5:
Use the Power

Query Editor to
add more file

attributes to the
import.

166 PART 2 Wrangling Data with Power Query

FIGURE 9-6:
Power Query

offers connection
types for many of

the popular
database systems

now in use.

FIGURE 9-7:
Tools for

connection to
Microsoft Azure
cloud database

services.

CHAPTER 9 Power Query Connection Types 167

ODBC connections to nonstandard databases
If you’re using a unique, nonstandard database system that isn’t listed under
From Database (refer to Figure 9-6) or From Azure (refer to Figure 9-7), not to
worry: As long as your database system can be connected to via an ODBC connec-
tion string, Power Query can connect to it.

Choose Data ➪   Get Data ➪   From Other Data Sources to see a list of other connection
types. Click the From ODBC option shown in Figure 9-8 to start a connection to
your unique database via an ODBC connection string.

Getting data from other data systems
In addition to ODBC, Figure 9-8 illustrates other kinds of data systems that can be
leveraged by Power Query.

Some of these data systems (SharePoint, Microsoft Exchange) are popular sys-
tems that are used in many organizations to store data and manage emails. Other
systems, such as OData Feeds and Hadoop, are less-common services used to
work with very large volumes of data. These are often mentioned in conversations
about big data. And of course, the From Web option (demonstrated in Chapter 8)
is an integral connection type for any analyst who leverages data from the internet.

FIGURE 9-8:
Starting an ODBC

connection.

168 PART 2 Wrangling Data with Power Query

Clicking any of these connections opens a set of dialog boxes customized for the
selected connection. These dialog boxes ask for the basic parameters that Power
Query needs in order to connect to the specified data source; parameters such as
file path, URL, server name, and credentials.

Each connection type requires its own, unique set of parameters, so each of their
dialog boxes is different. Luckily, Power Query rarely needs more than a handful
of parameters to connect to any single data source, so the dialog boxes are rela-
tively intuitive and hassle-free.

Walk-through: Getting data
from a database
It would be redundant to walk through the process of connection to every type of
database available. However, it would be useful to walk through the basic steps of
connecting a database.

Here are the steps for connecting to one of the more ubiquitous database
systems — Microsoft Access:

1.	 Choose Data ➪   Get Data ➪   From Database ➪   From Microsoft Access
Database.

2.	 Browse for your target database. You can use the Facility Services.accdb
database, found in the sample files for this book.

After Power Query connects to the database, the Navigator pane, shown in
Figure 9-9, activates. There, you see all database objects available to you,
including tables and views (or queries, in Access lingo).

3.	 Click the Sales_By_Employee view.

The Navigator pane displays a preview of the Sales_By_Employee data. If you
want to transform or shape this data, click the Transform Data button. In this
case, the data looks fine as is.

4.	 Click the Load button to complete the import.

After a bit of processing, Power Query loads the data to a new Excel work-
sheet and adds the new query to the Workbook Queries pane, as shown in
Figure 9-10.

You can select multiple tables and views by selecting the Select Multiple Items
check box and then placing a check mark next to each database object you want
imported.

CHAPTER 9 Power Query Connection Types 169

The icon next to each database object distinguishes whether that object is a table
or a view. Views have an icon that looks like two overlapping grids. See the icon
for the Sales_By_Employee view, shown in Figure 9-9, to get the idea.

It’s a best practice to use views whenever possible. Views are often cleaner data
sets because they’re already optimized to include only the columns and data that
are necessary. (This improves query performance and helps minimize the work-
book’s file size.) In addition, you don’t need to have an intimate knowledge of the
database architecture. Someone with that knowledge has already done the work
for you — joined the correct tables, applied the appropriate business rules, and
optimized output, for example.

FIGURE 9-9:
Select the view

you want
imported, and
then click the
Load button.

FIGURE 9-10:
The final

imported
database data.

170 PART 2 Wrangling Data with Power Query

Managing Data Source Settings
Every time you connect to any web-based data source or data source that requires
some level of credentials, Power Query caches (stores) the settings for that data
source.

Suppose that you connect to a SQL Server database, enter all your credentials, and
import the data you need. At the moment of successful connection, Power Query
caches information about that connection in a file located on your local PC. It
includes the connection string, username, password, and privacy settings, for
example.

The purpose of all this caching is so that you don’t have to reenter credentials
every time you need to refresh your queries. That’s nifty, but what happens when
your credentials are changed? Well, the short answer is those queries will fail until
the data source settings are updated.

You can edit data source settings by activating the Data Source Settings dialog box.
To do so, choose Data ➪   Get Data ➪   Data Source Settings.

The Data Source Settings dialog box, shown in Figure 9-11, contains a list of all
credentials-based data sources previously used in queries. Select the data source
you need to change, and then click the Edit Permissions button.

FIGURE 9-11:
Edit a data source
by selecting it and

clicking the Edit
Permissions

button.

CHAPTER 9 Power Query Connection Types 171

Another dialog box opens — this time, specific to the data source you selected (see
Figure 9-12). This dialog box enables you to edit credentials as well as other data
privacy settings.

Click the Edit button to make changes to the credentials for the data source. The
credentials editing screen will differ based on the data source you’re working
with, but again, the input dialog boxes are relatively intuitive and easy to update.

Power Query caches data source settings in a file located on your local PC. Even
though you may have deleted a particular query, the data source setting is retained
for possible future use. This can lead to a cluttered list of old and current data
sources. You can clean out old items by selecting the data source in the Data Source
Settings dialog box and clicking the Clear Permissions button.

Data Profiling with Power Query
When importing a new data source, it’s often useful to understand the intricacies
and pitfalls of the data before you start working with it. For instance, how many
records are empty? How many unique values are there in a given column? What
are the minimum and maximum values? Power Query’s data profiling capabilities
allow you to know your data and identify potential issues before using it.

FIGURE 9-12:
Edit a data source
by selecting it and

clicking the
Transform Data

button.

172 PART 2 Wrangling Data with Power Query

In this section, I fill you in on some of the ways you can leverage data profiling in
Power Query to get a better understanding of your data and address problem areas
before they become a problem later in your reporting processes.

Data Profiling options
While in the Power Query Editor window, click the View tab to see options for data
profiling in the Data View Group (see Figure 9-13).

Take a moment to review the purpose of each option.

»» Monospaced: Converts the font in the Data Preview window to monospaced,
making it easier to see differences in data.

»» Show Whitespace: Useful for calling out inline carriage returns and other
invisible space characters.

»» Column Quality: Displays the percentage of column values that are empty,
the percentage that are rendered as errors, and the percentage that are
considered valid values. This option is the most powerful in terms of providing
an at-a-glance view of your data.

»» Column Distribution: Provides a histogram visual displaying how many
distinct and unique records are found in the values in each of the columns.

»» Column Profile: Provides a useful way to see detailed descriptive statistics on
a chosen column, such as the number of records with a 0 value, the minimum
value in the column, the maximum value, the average value, and the standard
deviation of all values in the column.

Be aware that the data profiler in Power Query, by default, only profiles the first
1,000 records. You can tell the profile to use the entire data set to get a more com-
plete picture of your data. Figure 9-14 illustrates how to change the scope of data
profiling to the entire data set.

FIGURE 9-13:
Data Profiling

options are found
in the Data View
group under the

View tab.

CHAPTER 9 Power Query Connection Types 173

Data Profiling quick actions
When you select the Column Quality action, you’ll see a set of figures that repre-
sent the percentage of values in a column that are valid, contain empty records,
and are rendered as an error. Hovering over these percentages exposes a pop-up
containing an ellipsis (see Figure 9-15). Clicking the ellipsis activates a shortcut
menu allowing you to apply quick actions such as Remove Errors, Remove Empty,
and Remove Duplicates.

When selecting the Column profile action, you’ll two new panes below the data
preview window: Column Statistics and Value Distribution. As you can see in
Figure 9-16, the Value Distribution pane contains a histogram visual displaying
the distribution of values. Right-clicking any of the bars reveals a quick action
menu allowing you to apply transformations based on the type of data in that
column. In this case, right-clicking the bar for zero reveals the options for Num-
bers Filter and Replace Values.

The quick actions exposed via the data profiler are simply an easy way to find and
apply needed transformations. They aren’t any different from those found in the
Power Query Editor Ribbon and those exposed by simply right-clicking a value in
the data preview window.

FIGURE 9-14:
Choose Column
Profiling Based

on Entire Data Set
to get a more

complete picture
of your data.

174 PART 2 Wrangling Data with Power Query

FIGURE 9-15:
Exposing the

quick actions for
a column using

the data column
quality ellipsis.

FIGURE 9-16:
Right-clicking a
column profile
histogram bar

exposes the quick
actions for the

associated value.

CHAPTER 10 Transforming Your Way to Better Data 175

Chapter 10
Transforming Your Way
to Better Data

Wouldn’t it be great if all the data sources you work with were clean and
ready to use? Unfortunately, that’s not the case — you often receive
data that is unpolished, or raw. That is to say, the data may have dupli-

cates or blank fields or inconsistent text, for example.

Data transformation generally entails certain actions that are meant to “clean”
your data — actions such as establishing a table structure, removing duplicates,
cleaning text, removing blanks, and even adding your own calculations.

In this chapter, I introduce you to some of the tools and techniques in Power
Query that make it easy for you to clean and massage your data.

You can follow along with the examples in this chapter by downloading the
LeadList.txt sample file from www.dummies.com/go/excelpowerpivotpower
queryfd2e. After you download it, you can import the sample file into Power
Query by choosing Data ➪   Get & Transform Data ➪   From Text/CSV and then point-
ing to LeadList.txt.

IN THIS CHAPTER

»» Performing common transformations

»» Creating your own custom columns

»» Understanding Power Query
formulas

»» Applying conditional logic

»» Grouping and aggregating data

»» Working with custom data types

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e
http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

176 PART 2 Wrangling Data with Power Query

Completing Common Transformation
Tasks

Many of the unpolished data sets that come to you will require various types of
transformation actions. This section covers some of the more common transfor-
mation tasks you will have to perform, such as removing duplicates, finding and
replacing text, filling empty cells, and splitting or joining text values.

Removing duplicate records
Duplicate records are absolute analysis killers. The effect that duplicate records
have on your analysis can be far-reaching, corrupting almost every metric, sum-
mary, and analytical assessment you produce. It is for this reason that finding and
removing duplicate records should be your first priority when you receive a new
data set.

Before you begin examining the data set to find and remove duplicate records,
consider how you define a duplicate record. Look at the table shown in Figure 10-1,
where you see 11 records. Of the 11 records, how many are duplicates?

If you were to define a duplicate record in Figure 10-1 as a duplication of only
the SicCode, you would find 10 duplicate records. That is, of the 11 records shown,
1 record has a unique SicCode, and the other 10 are duplications. Now, if you were
to expand your definition of a duplicate record to a duplication of both SicCode and
PostalCode, you would find only two duplicates: the duplication of postal codes
77032 and 77040. Finally, if you were to define a duplicate record as a duplication
of the unique value of SicCode, PostalCode, and CompanyNumber, you would find
no duplicates.

This example shows that having two records with the same value in a column
doesn’t necessarily mean that you have a duplicate record. It’s up to you to

FIGURE 10-1:
Does this table
have duplicate

records? It
depends on how
you define them.

CHAPTER 10 Transforming Your Way to Better Data 177

determine which field or combination of fields best defines a unique record in the
data set.

After you have a clear idea of which field or fields best make up a unique record in
the table, you can remove duplicates easily by using the Remove Duplicates
command.

Figure 10-2 illustrates the removal of duplicate rows based on three columns.
Note the importance of selecting the columns that define a duplicate. In this case,
the combination of Address, CompanyNumber, and CompanyName defines a
duplicate record. You select these columns before clicking the Remove Duplicates
command on the Home tab of the Power Query ribbon.

The Remove Duplicates command essentially looks for distinct values in the col-
umns you selected and then removes all records necessary to end up with a unique
list of values. If you select only one column before giving the Remove Duplicates
command, Power Query uses only that one column you selected to determine the
unique list of values, which undoubtedly removes too many records — records
that aren’t truly duplicates. For this reason, be sure to select all columns that
define a duplicate.

If you make a mistake and remove duplicates based on the wrong set of columns,
don’t worry: You can always use the Query Settings pane to delete that step.
Right-click on the Removed Duplicates step and select Delete (see Figure 10-3).
Alternatively, you can click the X next to the Remove Duplicates step.

If you don’t see the Query Settings pane in the Power Query Editor window, choose
View ➪   Query Settings to activate the Query Settings pane.

FIGURE 10-2:
Removing
duplicate
records.

178 PART 2 Wrangling Data with Power Query

Filling in blank fields
There are two kinds of blank values: null and empty string. A null is essentially a
numerical value of nothing, whereas an empty string is equivalent to entering two
quotation marks ("") in a cell.

Blank fields aren’t necessarily a bad thing, but having an excessive number of
blanks in your data can lead to unexpected problems when analyzing it.

Your job is to decide whether to leave the blanks in the data set or fill them with
actual values. Consider the following best practices:

»» Use blanks sparingly. Working with a data set is a much less daunting task
when you don’t have to test continually for blank values.

»» Use alternatives whenever possible. Represent missing values with some
logical missing-value code whenever possible.

»» Never use null values in number fields. Use zero instead of null in a
currency or a number field that will be used in calculations.

Replacing null values
Power Query shows the word null for any null value in your data. Replacing the
null values is as simple as selecting the column or columns you want to fix and
then selecting the Replace Values command.

FIGURE 10-3:
Undo the removal

of records by
deleting the

Removed
Duplicates step.

CHAPTER 10 Transforming Your Way to Better Data 179

The Replace Values dialog box shown in Figure 10-4 appears. The key here is to
enter the word null as the Value to Find value. You can then enter the value that
you want to use instead. In this case, you can enter 0 as the Replace With value.

Filling in empty strings
To follow best practices, represent missing values in a field with some logical
value code whenever possible. For example, in Figure 10-5, I want to tag with the
word Undefined any record with a missing title in the ContactTitle field.

You can do so by clicking on ContactTitle, selecting the Replace Values command,
and then entering the word Undefined in the Replace Values dialog box. As you
can see in Figure 10-5, because you’re replacing an empty string, there’s no need
to enter anything in the Value to Find input box.

If you need to adjust or correct the step where you replace values, you can reopen
the Replace Values dialog box by clicking the Gear icon next to the name for that
step. This is true for any action that requires a dialog box to complete. Clicking on
the Gear icon next to any step name opens the appropriate dialog box for that step.

Concatenating columns
You can easily concatenate (join) the values in two or more columns. In Power
Query, you do this by using the Merge Columns command. The Merge Columns

FIGURE 10-4:
Replacing

null with 0.

FIGURE 10-5:
Replacing empty

strings with the
word Undefined.

180 PART 2 Wrangling Data with Power Query

command concatenates the values in two or more fields and outputs the newly
merged values into a new column.

First choose the columns you want to concatenate, and then select the Transform
tab and then the Merge Columns command, as shown in Figure 10-6.

The Merge Columns dialog box opens, as shown in Figure 10-7. You have the
option of choosing from a list of the most commonly used delimiters (comma,
space, tab, etc.). You can also select the Custom option to enter your own delim-
iter. In Figure 10-7, a hyphen (-) is used.

As you can see, you can also name the new column that will be created.

The reward for your efforts is a new field containing the concatenated values from
the original columns (see Figure 10-8). The resulting column will be named
Merged. You can rename the column by right-clicking it and selecting the Rename
option.

FIGURE 10-6:
Merging the Type

and Code fields.

FIGURE 10-7:
The Merge

Columns
dialog box.

CHAPTER 10 Transforming Your Way to Better Data 181

This feature is nifty, but notice that Power Query removes the original Type and
Code columns. In some instances, you’ll definitely want to concatenate values but
retain the source columns. In those instances, it’s useful to first copy the column
and perform the extraction on the duplicate column. You can create a copy of a
column by right-clicking the column and selecting Duplicate Column. When the
duplicate column is created, it will be the last column (at the far right) of the table.

Changing case
Making sure that the text in your data has the correct capitalization may sound
trivial, but it’s important. Imagine that you receive a customer table that has an
address field where all addresses are lowercase. How will that look on labels, form
letters, or invoices? Fortunately, Power Query has a few built-in functions that
make changing the case of your text a snap.

For example, the ContactName field (see Figure 10-9) contains names that are
formatted in all uppercase letters. To change these names to the more appropriate
proper case, you can use the Format command found on the Transform tab. The
Format command has options for lowercase, uppercase, and proper case (capital-
ize each word).

Selecting the Capitalize Each Word option reformats all values in the selected col-
umn to proper case.

Finding and replacing specific text
Imagine that you work in a company named BLVD, Inc. One day, the president of
your company informs you that the abbreviation blvd on all addresses is now
deemed an infringement of your company’s trademarked name and must be
changed to Boulevard as soon as possible. How would you go about meeting this
new requirement?

FIGURE 10-8:
The original

columns are
removed and

replaced with a
new, merged

column.

182 PART 2 Wrangling Data with Power Query

The Replace Values function is ideal in a situation like this. Right-click the Address
field, and then click the Replace Values command.

In the Replace Values dialog box (shown in Figure 10-10), simply fill the Value to
Find input box with the value you want to find, and then fill the Replace With
input box with the value you want to use as a replacement.

Note that clicking on Advanced Options reveals two optional settings, which are
described in this list:

»» Match entire cell contents: Selecting this option tells Power Query to replace
the specified value only if that value makes up the entire contents of the
record. This is useful when you’re attempting to replace a value such as 0
(zero) without replacing, for instance, all the zeros in the number 1,000.

FIGURE 10-9:
Reformatting

the ContactName
field to

proper case.

FIGURE 10-10:
Replacing

text values.

CHAPTER 10 Transforming Your Way to Better Data 183

»» Replace Using Special Characters: Selecting this option allows you to use
special invisible characters such as line feed, carriage return, or tab as
replacement text. This option is useful when you want to force an indent or
reposition the text so that it shows up on two lines.

Trimming and cleaning text
When you receive a data set from a mainframe system, a data warehouse, or even
a text file, it isn’t uncommon to have field values that contain leading and trailing
spaces. These spaces can cause some abnormal results, especially when you’re
appending values with leading and trailing spaces to other values that are clean.
To demonstrate this concept, look at the data set in Figure 10-11.

This view is intended to be an aggregate view that displays the sum of the dollar
potential for California, New York, and Texas. However, the leading spaces are
forcing each state into two sets, preventing you from discerning the accurate
totals.

You can easily remove leading and trailing spaces by using the Trim function in
Power Query. Figure 10-12 demonstrates how you would update a field to remove
the leading and trailing spaces by using the Trim command found on the Trans-
formation tab.

Again, the Trim command is applied to any column or columns you select. So, you
can fix multiple columns at a time by simply selecting them before selecting the
Trim command.

Figure 10-12 also shows the Clean command (beneath Trim). Whereas Trim
removes leading and trailing spaces, the Clean command removes any invisible
characters, such as carriage returns and other nonprintable characters that may
slip in from external source systems. These characters are typically rendered in
Excel as question marks or square boxes. But in Power Query, they show up as
spaces.

FIGURE 10-11:
Leading spaces

can cause issues
in analysis.

184 PART 2 Wrangling Data with Power Query

If the source system that supplies your data has a nasty habit of including strange
characters and leading spaces, you can apply the Trim and Clean functions to san-
itize the data set.

You may already know that the TRIM function in Excel removes the leading spaces,
trailing spaces, and excess spaces within the given text. Power Query’s TRIM func-
tion removes leading and trailing spaces, but doesn’t touch the excess spaces in
the text. If excess spaces are a problem in your data, you can deal with them by
using the Replace Values function to replace a given number of spaces with only
one space.

Extracting the left, right, and middle values
In Excel, the RIGHT function, the LEFT function, and the MID function allow you to
extract portions of a string starting from different positions:

»» LEFT: Returns a specified number of characters, starting from the leftmost
character of the string. The required arguments for the LEFT function are the
text you’re evaluating and the number of characters you want returned. For
example, LEFT("70056-3504", 5) would return five characters starting from
the leftmost character (70056).

»» RIGHT: Returns a specified number of characters starting from the rightmost
character of the string. The required arguments for the RIGHT function are the
text you’re evaluating and the number of characters you want returned. For
example, RIGHT("Microsoft", 4) would return four characters starting
from the rightmost character (soft).

FIGURE 10-12:
The Trim

command.

CHAPTER 10 Transforming Your Way to Better Data 185

»» MID: Returns a specified number of characters starting from a specified
character position. The required arguments for the MID function are the text
you’re evaluating, the starting position, and the number of characters you
want returned. For example, MID("Lonely", 2, 3) would return either
three characters starting from the second character or character number 2 in
the string (one).

Power Query has equivalent functions exposed through the Extract command,
found on the Transformation tab (see Figure 10-13). The Extract command allows
you to get specified characters from a value.

The options under the Extract command are described in this list:

»» Length: Transforms a given column into numbers that represent the number
of characters in each row (similar to Excel’s LEN function).

»» First Characters: Transforms a given column to show a specified number of
characters from the beginning of text in each row (similar to Excel’s LEFT
function).

»» Last Characters: Transforms a given column to show a specified number of
characters from the end of text in each row (similar to Excel’s RIGHT function).

»» Range: Transforms a given column to show a specified number of characters
starting from a specified character position (similar to Excel’s MID function).

Applying the Extract command to a column effectively replaces the original text
with the results of the operation you choose to apply. That is to say, the original
text isn’t visible in the table after you apply the Extract command. For this reason,
you may want to first copy the column and perform the extraction on the duplicate
column.

FIGURE 10-13:
The Extract

command allows
you to pull out

parts of the text
found in a

column.

186 PART 2 Wrangling Data with Power Query

You can create a copy of a column by right-clicking on the column and selecting
Duplicate Column. When the duplicate column is created, it’s the last (rightmost)
column of the table.

Extracting first and last characters
To extract the first N characters of text, highlight the column, select Extract ➪   First
Characters, and then use the dialog box shown in Figure 10-14 to specify the num-
ber of characters you want to extract. In this case, the first three characters of the
Phone field are extracted.

To extract the last N characters of text, highlight the column, select Extract  ➪    Last
Characters, and then use the dialog box to specify the number of characters you
want extracted.

Extracting middle characters
To extract the middle N characters of text, highlight the column and select
Extract  ➪    Range. The dialog box shown in Figure 10-15 opens.

The idea here is to tell Power Query to extract a specific number of characters
starting from a certain position in the text. For example, the SicCode field is a
4-digit field. If you want to extract the two middle numbers of the SicCode, you
would tell Power Query to start at the second character and extract two characters
from there.

As you can see in Figure 10-15, the starting index is set to 2 (starting at the second
character) and the number of characters is set to 2 (extract two characters from
the starting index).

FIGURE 10-14:
Extracting the

first three
characters of the

Phone field.

CHAPTER 10 Transforming Your Way to Better Data 187

Splitting columns using character markers
Have you ever gotten a data set where two or more distinct pieces of data were
jammed into one field and separated by commas? For example, a field labeled
Address may have a single text value that represents address, city, state, and
postal code. In a proper data set, this text would be split into four fields.

In Figure 10-16, you can see that the values in the ContactName field are strings
that represent Last name, First name, and Middle initial. Imagine that you need to
split this column string into three separate fields.

Although this isn’t a straightforward undertaking in Excel, it can be done fairly
easily with the Split Column command (found on the Transform tab).

FIGURE 10-15:
Extracting the

two middle
characters of the

SicCode.

FIGURE 10-16:
The Split Column

command can
easily split the
ContactName

Field into three
separate
columns.

188 PART 2 Wrangling Data with Power Query

Selecting the Split Column command reveals two options; this list describes what
you can do with them:

»» By Delimiter: Split a column based on specific characters such as commas,
semicolons, or spaces. This option is useful for parsing names or addresses or
any field that contains multiple data points separated by delimiting
characters.

»» By Number of Characters: Split a column based on a specified number of
characters — useful for parsing uniform text at a defined character position.

»» By Positions: Split a column based on fixed numeric positions you specify.

»» By Lowercase to Uppercase: Split a column where the case changes from
lowercase to uppercase.

»» By Uppercase to Lowercase: Split a column where the case changes from
uppercase to lowercase.

»» By Digit to Non-Digit: Split a column where the previous character is a digit,
and the next consecutive character is a non-digit.

»» By Non-digit to Digit: Split a column where the previous character is a
non-digit and the next consecutive character is a digit.

In the example (refer to Figure 10-16), the contact names are made up of last
names, first names, and middle initials, all separated (delimited) by commas. So
the By Delimiter option is the one I show you how to use.

You can highlight the ContactName field and select Split Column  ➪    By Delimiter
to open the Split by Column Delimiter dialog box, shown in Figure 10-17.

This list describes the inputs:

»» Select or Enter Delimiter: Use the drop-down menu to choose the delimiter
that will define where the values should be split. If the delimiter isn’t listed as a
choice on the drop-down list, you can select the Custom option and
define your own.

»» Split: Select how you want Power Query to use the specified delimiter. Power
Query can split the column only on the first occurrence of the delimiter (the
leftmost delimiter) — effectively creating two columns. Alternatively, you can
tell Power Query to split the column only on the last occurrence of the
delimiter (the rightmost delimiter) — again, creating two columns. The third
option is to tell Power Query to split the column at each occurrence of the
delimiter.

CHAPTER 10 Transforming Your Way to Better Data 189

»» Advanced Options: By default, selecting the option to split the column at
each occurrence of the delimiter creates as many columns as there are
delimiters. You can use the advanced options to override the default and limit
the number of columns to create. You also have the advanced option to split
your value into new rows instead of new columns.

Figure 10-18 shows the new columns created after the ContactName column is
split at each comma. As you can see, three new fields are created. You can rename
a field by right-clicking the field name and selecting the Rename option.

Pivoting and unpivoting fields
You often encounter data sets like the one shown in Figure 10-19, where impor-
tant headings (like Month) are spread across the top of the table, pulling double
duty as column labels and actual data values. This matrix layout is easy to look at
in a spreadsheet, but it causes problems when attempting to perform any kind of
data analysis that requires aggregation or grouping, for example.

Power Pivot offers an easy way to unpivot and pivot columns, allowing you to
quickly convert matrix-style tables to tabular data sets (and vice versa).

FIGURE 10-17:
Splitting the

ContactName
column at every
occurrence of a

comma.

190 PART 2 Wrangling Data with Power Query

Unpivot Columns command
The Unpivot Columns command lets you select a set of columns and convert those
columns into two columns: one column consisting of the old column labels and
another containing the old column data.

For instance, in Figure 10-19, the month columns can be unpivoted by selecting
the months and then clicking the Unpivot Columns command.

The resulting table is shown in Figure 10-20. Note that the month labels are now
entries in a new column named Attribute. The month values are now in a new
column named Value. You can, of course rename these columns to Month and
Revenue, for example.

Unpivot Other Columns command
As helpful as the Unpivot Columns command is, it has a flaw: You have to explic-
itly select the months that you want unpivoted. But what if the number of col-
umns is ever growing? What if you unpivot January through June, but next month
a new data set will arrive with July and then August and then September? Because

FIGURE 10-19:
Matrix layouts are

problematic for
data analysis.

FIGURE 10-18:
The ContactName

field has been
split successfully

into three
columns.

CHAPTER 10 Transforming Your Way to Better Data 191

the Unpivot Columns command forces you to essentially hard-code the columns
you want unpivoted, you have to redo the unpivot each and every month.

Fortunately, you can avoid this problem with the Unpivot Other Columns com-
mand. This nifty command allows you to unpivot by selecting the columns that
you want to remain static and telling Power Query to unpivot all other columns.

For instance, Figure 10-21 demonstrates that rather than select the month col-
umns, you can select the Market and Product_Description columns and then
select Unpivot Other Columns from the Unpivot Columns drop-down menu.

FIGURE 10-20:
All months are

now in a tabular
format.

FIGURE 10-21:
Use Unpivot

Other Columns
when the number

of matrix
columns is

variable.

192 PART 2 Wrangling Data with Power Query

Now, it doesn’t matter how many new month columns are added or removed each
month. Your query always unpivots the correct columns.

Always use the Unpivot Other Columns option. Even if you don’t anticipate new
matrix columns, it’s always a good bet to use the option that offers more flexibil-
ity for those unexpected changes in data.

Pivot Columns command
If you find that you need to transform your data from a tabular layout to a matrix-
style layout, you can use the Pivot Columns command.

Simply select the columns that will make up the header labels and values for the
new matrix columns, and then select the Pivot Column command, shown in
Figure 10-22.

Before finalizing the pivot operation, Power Query opens a dialog box (shown in
Figure 10-23) to confirm the value column and the aggregation method. By
default, Power Query uses the Sum operation to aggregate the data into the matrix
format. You can override this default setting by selecting a different operation
(count, average, or median, for example). You can even specify that you don’t
want aggregation performed. Clicking the OK button finalizes the pivot
operation.

FIGURE 10-22:
Pivoting the

Month and Value
columns.

CHAPTER 10 Transforming Your Way to Better Data 193

Creating Custom Columns
When transforming your data, you sometimes have to add your own columns to
extract key data points, create new dimensions, or even create your own
calculations.

You start a new custom column by selecting the Add Column tab and clicking the
Custom Column command. The Custom Column dialog box (shown in Figure 10-24)
appears; here you specify the contents of your new column through the use of
Power Query formulas. When you add a new custom column, it won’t do anything
until you provide a formula that gives it some utility.

FIGURE 10-23:
Confirm the
aggregation
operation to

finalize the pivot
transformation.

FIGURE 10-24:
The Custom

Column
dialog box.

194 PART 2 Wrangling Data with Power Query

As for the Custom Column dialog box, there’s not much to it. The inputs are
described in this list:

»» New column name: An input box where you enter a name for the column
you’re creating.

»» Available columns: A list box that contains the names of all columns in the
query. Double-click any column name in this list box to automatically place it
in the formula area.

»» Custom column formula: The area where you type the formula.

As in Excel, a formula can be as simple as =1 or as complicated as an if statement
that applies some conditional logic. Over the next few sections, I walk you through
a few examples of creating custom columns to go beyond the functionality pro-
vided via the user interface.

But before diving into building Power Query formulas, you should understand how
Power Query formulas differ from those in Excel. Here are some high-level differ-
ences to be aware of:

»» No cell references. You can’t reach outside the Custom Column dialog box to
select a range of cells. Power Query formulas work by referencing columns,
not cells.

»» Excel functions don’t work. The Excel functions you’re used to don’t work in
Power Query. Power Query has many of the same kinds of functions as Excel,
but it has its own formula language.

»» Everything is case sensitive. In Excel, you can type in all lowercase or all
uppercase letters and your formulas will work. Not so in Power Query. To
Power Query, sum, Sum, and SUM are three different items, and only one of
them is acceptable.

»» Data types matter. Some fields are text fields, other fields are number fields,
and still others are date fields. Excel does a good job of handling formulas that
mix fields of differing data types. The Power Query formula language, which is
extremely sensitive to data types, doesn’t have the built-in intelligence to
gracefully handle data type mismatches. Data type issues are resolved with
conversion functions, as covered later in this chapter.

»» No tool tips or intelligence help. Excel is quick to throw up a tool tip or a
menu of options when you start entering a new formula. Power Query has
none of that. As of this writing, Power Query offers only a Learn About Power
Query Formulas link to a Microsoft site dedicated to Power Query.

CHAPTER 10 Transforming Your Way to Better Data 195

Don’t panic. Power Query formulas are not as gloomy as they sound. Let’s start
with a simple custom column.

Concatenating with a custom column
Earlier in this chapter, I tell you how to concatenate values from two or more col-
umns by using the Merge Columns command. Although this command is easy to
use, it results in the original source columns being removed. You will likely want
to concatenate values but still retain the source columns.

In these instances, you can create your own custom column. Follow these steps to
create a new column that merges the Type and Code columns:

1.	 While in the Query Editor, choose Add Column ➪   Custom Column.

2.	 Place the cursor in the Custom Column Formula area (after the equal
sign).

3.	 Find the Type column in the Available Columns list and double-click on it.

You see [Type] pop into the formula area after the equal sign.

4.	 After [Type], enter the following text: & "-" &.

This step ensures that the values in the two columns are separated by a
hyphen.

5.	 Enter Number.ToText().

Number.ToText() is a Power Query function that converts a number to text
format on the fly so that it can be used with other text. In this case, because
the Code field is formatted as a number, you need convert it on the fly to join it
to the Type field. I tell you more about data type conversions later in this
chapter.

6.	 Place the cursor between the parentheses for the Number.ToText()
function and then find the Code column in the Available Columns list and
double-click it.

You see [Code] pop into the formula area between the parentheses.

7.	 In the New Column Name input, enter MyFirstColumn.

At this point, the dialog box should look similar to the one shown in Figure 10-25.
Note the message at the bottom of the dialog box: No syntax errors have
been detected. This message refers to the syntax you entered. Every time you
create or adjust a formula, you’ll want to ensure that this message states that no
errors have been detected.

8.	 Click OK to add the custom column.

196 PART 2 Wrangling Data with Power Query

If all goes well, you have a new custom column that concatenates two fields. In
this basic example, you see the basic foundation of how Power Query formulas
work.

Understanding data type conversions
When working with formulas in Power Query, you inevitably need to perform
some action on fields that have differing data types, as in the exercise in the pre-
vious section, where I show you how to merge the Type column (a text field) with
the Code column (a numeric field). In that example, you use a conversion function
to change the data type of the Code field so that it can be temporarily treated as a
text field.

A conversion function does exactly what it sounds like: It converts data from one
data type to another.

Table 10-1 lists common conversion functions. As demonstrated in the previous
section, you simply wrap these functions around the columns that need
converting.

To find and change the data type for a field, place the cursor in the field and then
select the Data Type drop-down menu on the Transform tab (see Figure 10-26).
The data type at the top is the type of field the cursor is in. You can edit the data
type for the field by selecting a new type from the drop-down list.

FIGURE 10-25:
A formula to

merge the Type
and Code
columns.

CHAPTER 10 Transforming Your Way to Better Data 197

Spicing up custom columns with functions
With a few basic fundamentals and a little knowledge of Power Query functions,
you can create transformations that go beyond what you can do by using the Query
Editor. In this example, I show you how to use a custom column to pad numbers
with zeros.

You may encounter a situation where key fields are required to have a certain
number of characters to make the data able to interface with peripheral platforms
such as ADP or SAP. Suppose that the CompanyNumber field must be ten charac-
ters long. Those company numbers that aren’t ten characters long must be padded
with enough leading zeros to create a ten-character string.

TABLE 10-1	 Common Conversion Functions
Convert From To Function

Date Text Date.ToText()

Time Text Time.ToText()

Number Text Number.ToText()

Text Number Number.FromText()

Text Dates Date Date.FromText()

Numeric Dates Date Date.From()

FIGURE 10-26:
Use the Data

Type drop-down
menu to discover

and select the
data type of a

given field.

198 PART 2 Wrangling Data with Power Query

The secret to this supplying the proper number of character is to add ten leading
zeros to every company number, regardless of the current length, and then pass
them through a function similar to the RIGHT function, which extracts only the
rightmost ten characters.

For example, you would first convert company number 29875764 to
000000000029875764; then you would use the RIGHT function to extract only the
rightmost ten characters, leaving you with 0029875764.

Although you follow essentially two steps, you can accomplish the same result
with only one custom column. Here’s how:

1.	 While in the Query Editor, choose Add Column ➪   Custom Column.

2.	 Place the cursor in the Custom Column Formula area (after the equal
sign).

3.	 Enter ten zeros in quotes (as in "0000000000") followed by an amper-
sand (&).

4.	 Enter Number.ToText().

5.	 Place the cursor between the parentheses for the Number.ToText()
function and then find the CompanyNumber column in the Available
Columns list and double-click it.

You see [CompanyNumber] pop into the formula area between the
parentheses.

At this point, the formula area should contain this syntax:

"0000000000"&Number.ToText([CompanyNumber])

This formula results in nothing more than a concatenation of ten zeros and the
CompanyNumber. The goal is to go further and extract only the rightmost ten
characters. Unfortunately, the RIGHT function is an Excel function that doesn’t
work in Power Query. However, Power Query does have an equivalent function
named Text.End(). Like the RIGHT function, the Text.End() function
requires a couple of parameters: the text expression and the number of
characters to extract:

Text.End([MyText], 10)

In this example, the text expression is the formula, and the number of
characters to extract is 10.

CHAPTER 10 Transforming Your Way to Better Data 199

6.	 Enter Text.End before your existing formula, and then follow the formula
with, 10.

Here’s the final syntax:

Text.End("0000000000"&Number.ToText([CompanyNumber]), 10)

7.	 In the New Column Name input, enter TenDigitCustNumber.

At this point, the dialog box should look similar to the one shown in Figure 10-27.
Again, note the message at the bottom of the dialog box. This message will tell you
if you have a syntax error in your formula. Make sure that the message at the
bottom of the dialog box reads No syntax errors have been detected.

8.	 Click OK to apply the custom column.

Table 10-2 lists other Power Query functions that are useful in extending the
capabilities of custom columns. Take a moment to examine the list of functions
and note how they differ from their Excel equivalents. Remember that Power
Query functions are case sensitive.

Adding conditional logic to custom columns
As you might notice in Table 10-2, Power Query has a built-in IF function. The IF
function is designed to test for conditions and provide different outcomes based
on the results of those tests. In this section, you’ll see how you can control the
output of your custom columns by utilizing Power Query’s IF function.

FIGURE 10-27:
A formula to

create a
consistent

ten-digit padded
CompanyNumber.

200 PART 2 Wrangling Data with Power Query

As in Excel, Power Query’s IF function evaluates a specific condition and returns
a result based on a true or false determination:

if [Expression] then [Result1] else [Result2]

In Excel, you think of commas in an IF function as then and else statements.
The formula IF(Babies = 2 , "Twins", "Not Twins") would translate to this:
If Babies equals 2, then Twins, else Not Twins In Power Query, you don’t use com-
mas. You spell out the entire expression.

You can also use the IF function to save steps in your analytical processes and,
ultimately, save time. For example, you may need to tag customers as either large
customers or small customers, based on their dollar potential. You decide to add a
custom column that contains either “LARGE” or “SMALL” based on the revenue
potential of the customer.

With the help of the IF function, you can tag all customers with one custom
column that uses this formula:

IF [2020 Potential Revenue]>=10000 then "LARGE" else "SMALL"

This function tells Power Query to evaluate the [2020 Potential Revenue] field for
each record. If the potential record is greater than or equal to 10,000, use the word
LARGE; if not, use the word SMALL.

Figure 10-28 demonstrates this if statement as it is applied in the Custom Column
dialog box.

TABLE 10-2	 Useful Transformation Functions
Excel Function Power Query Function

LEFT([Text], [Number]) Text.Start([Text], [Number])

RIGHT([Text], [Number]) Text.End([Text], [Number])

MID([Text], [StartPosition], [Number]) Text.Range([Text], [StartPosition],
[Number])

FIND([Find], [Within]) Text.PositionOf([Within], [Find])

IF([Expression], [Result1], [Result2]) if [Expression] then [Result1] else
[Result2]

IFERROR([Procedure], [FailResult]) try [Procedure] otherwise [FailResult]

CHAPTER 10 Transforming Your Way to Better Data 201

Power Query pays no attention to white space, so you can add as many spaces and
carriage returns as you want. As long as the correct case and spelling are used,
Power Query doesn’t complain.

Figure 10-28 illustrates how separating formulas into separate lines can make
them much easier to read.

Grouping and Aggregating Data
In some cases, you may need to transform your data set into compact groups in
order to get it into a manageable size of unique values. You may even need to
summarize numerical values into an aggregate view. An aggregate view is a grouped
snapshot of your data that shows sums, averages, counts, and more.

Power Query offers a Group By feature that enables you quickly group data and
create aggregate views. Follow these steps to use the Group By feature:

1.	 While in the Query Editor, select the Group By command on the
Transform tab.

The Group By dialog box opens.

2.	 From the Group By drop-down menu, select the field you want to group
by. Click the plus sign (+) above the Group By drop-down list to add
additional fields to grouping.

Figure 10-29 shows grouping by State and City.

FIGURE 10-28:
Applying an IF
statement in a

custom column.

202 PART 2 Wrangling Data with Power Query

3.	 Use the New Column Name input box to give the new aggregate column
a name (for example, 2021 Total Potential).

4.	 From the Operation drop-down list, select the kind of aggregation you
want to apply (Sum, Count, Avg, Min, Max, and so on).

5.	 Use the Column drop-down list to choose the column that will be
aggregated (for example, 2021 Potential Revenue).

6.	 Click the OK button to confirm and apply your changes.

Figure 10-30 illustrates the resulting output.

When you apply the Group By feature, Power Query removes all columns that were
not used when configuring the Group By dialog box. This leaves you with a clean
view of just your grouped data.

FIGURE 10-29:
Using the Group
By dialog box to
create a view of

2021 Total
Potential by State

and City.

FIGURE 10-30:
The resulting

aggregate view by
State and City.

CHAPTER 10 Transforming Your Way to Better Data 203

Working with Custom Data Types
The Custom Data feature of Power Query allows you to store multiple columns of
data in one column as metadata. Excel formulas can then interact with these rich
data types to expose the stored data within. In this section, you explore the basics
of using custom data types in your reporting.

You can follow along with the examples in this chapter by downloading the
CustomDataTypes.xlsx sample file from www.dummies.com/go/excelpower
pivotpowerqueryfd2e. Open the file, and then choose Data ➪   From Table/Range.

To be frank, the term custom data type is a bit unfortunate, because it doesn’t really
correlate with the traditional meaning of data type (number, date, currency, and
so on). In Power Query, you can think of a custom data type as a kind of container
that allows you to store the data for many columns and then use that data else-
where in your workbook.

You can get a sense of the power of this feature by following these steps:

1.	 In the Query Editor, right-click the Employee column and select Create
Data Type.

The Create Data Type dialog box, shown in Figure 10-31, appears.

FIGURE 10-31:
Creating a

custom data type.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e
http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

204 PART 2 Wrangling Data with Power Query

2.	 Click the Advanced option to reveal a list of available fields.

The idea here is that the Display column (Employee, in this case) will be a kind
of container that will hold data from other columns you specify.

3.	 Select the Region column in the list of available columns and then click
the Add button.

Repeat for each column in the list of available fields.

4.	 Click the OK button to confirm your changes.

At this point, your data preview window will show only the Employee column
because that’s the column you selected as your Display column. As you can see in
Figure 10-32, clicking any value in the Employee column now results in a table
below the data preview window, which shows all the data contained for that value.

Click the Close & Load button on the Home tab of the Power Query Editor to send
your results to a new worksheet. In Figure 10-33, you can see that the output of
this query is a list of values from the Employee column, each containing the Data
Type icon designed to let you know that the value is part of a data type. The smart
icon to the right of the table allows you to add any of the underlying values for that
data type.

The real power of custom data types is the ability to reference underlying values
via simple formulas. To illustrate one way to use data types, take a look at
Figure 10-34. Here, I loaded a data validation drop-down with the values from the
Employee column (the Data Type header). You can see the icon next to the selected
employee name, confirming the value is a data type. Now you can reference that
value with a simple formula to see the available columns underneath.

FIGURE 10-32:
Each value in a

data type column
contains the data

for underlying
columns, as

shown below the
data preview

window.

CHAPTER 10 Transforming Your Way to Better Data 205

That’s right. Reference a data type, enter the dot (.) operator, and you’ll have
access to any of the underlying column values. Selecting a new employee from the
data validation drop-down automatically pulls that employee’s data.

Refreshing your query will not only bring in any new data type headers, but also
automatically update any of the values resulting from a formula that references
your data types.

FIGURE 10-33:
Data types have a

special icon next
to each value and

allow you to see
any values in

underlying
columns.

FIGURE 10-34:
Referencing a

data type value
and entering the

dot (.) operator
allows you to

select any of the
underlying

columns.

CHAPTER 11 Making Queries Work Together 207

Chapter 11
Making Queries Work
Together

Data is frequently analyzed in layers, with each layer of analysis using or
building on the previous layer. You may not know it, but you already build
layers all the time. For instance, when you build a pivot table using the

results of a Power Query output, you’re layering your analysis. When you build a
query based on a table created by a SQL Server view, you’re also creating a layered
analysis.

Sure, you would probably love to be able to analyze a single data source and call it
a day. But that’s not how data analysis works. You often find the need to build
queries on top of other queries to get the results you’re looking for. That’s what
this chapter is all about. In this chapter, I help you examine a few ways you can
advance your data analysis by making your queries work together.

IN THIS CHAPTER

»» Reusing query steps

»» Consolidating data with the Append
feature

»» Understanding join types

»» Using the Merge feature

»» Fuzzy matching when merging
queries

208 PART 2 Wrangling Data with Power Query

Reusing Query Steps
Data analysts commonly rely on the same main data tables for all kinds of analy-
sis. Even the simple table shown in Figure 11-1 can be used to create different
views: sales by employee, sales by business segment, or sales by region, for
example.

Of course, you can build separate queries, each performing different grouping and
aggregation steps, but that would mean repeating all the data clean-up steps you
needed before performing any kind of analysis.

To get a better understanding of how query steps can help save time, take a
moment to follow these steps:

1.	 Open the Sales By Employee.xlsx workbook, found in the sample files
for this book.

2.	 Place the cursor anywhere inside the table, and then choose Data ➪   From
Table/Range.

Power Query opens the Query Editor.

3.	 While in the Query Editor, click the Filter drop-down list for the Market
field and filter out the Canada market. (Remove the check mark next to
Canada.)

4.	 Select the Last_Name and First_Name fields, and then choose
Transform ➪ Merge Columns.

The Merge Columns dialog box appears.

5.	 Create a new Employee field, joining Last_Name and First_Name and
separating them by a comma, as shown in Figure 11-2.

FIGURE 11-1:
This data can

be used as
the source for

various levels of
aggregated

analysis.

CHAPTER 11 Making Queries Work Together 209

6.	 Select only the Employee column and click the Group By command on the
Transform tab.

The Group By dialog box opens, as shown in Figure 11-3.

7.	 The goal is to Group By the Employee field to get the Sum of Sales
Amount, as shown in Figure 11-3. Name the new aggregated column
Revenue.

At this point, you’ve successfully created a view that shows total revenue by
employee. As you can see in Figure 11-4, the query steps include all the
preparation work you did before grouping.

What happens if you want to create another analysis using the same data? For
instance, what if you want another view that shows Employee sales by
business segment?

You could always start from Step 1 and import another copy of the source
data, but you’d have to repeat the preparation steps (the steps for Filtered
Rows and Merged Columns, in this case).

FIGURE 11-2:
Merge the

Last_Name and
First_Name
columns to

create a new
Employee field.

FIGURE 11-3:
Group the

Employee field
and Sum Sales

Amount to create
a new Revenue

column.

210 PART 2 Wrangling Data with Power Query

A better way is to reuse the steps you’ve already created by extracting them
into a new query. The idea is to first decide what steps you want to reuse and
then right-click the step immediately below it. In this scenario (refer to
Figure 11-4), you keep all query steps until Grouped Rows.

8.	 Right-click the Grouped Rows step and select Extract Previous.

The Extract Steps dialog box opens.

9.	 Name the new query SalesByBusiness, as shown in Figure 11-5. Click the
OK button to confirm.

After you click OK, Power Query does two things:

»» Moves all extracted steps to the newly created query

»» Ties the original query to the new query

FIGURE 11-4:
All the query
steps before

Grouped Rows
are needed in

order to prepare
the data for

grouping.

FIGURE 11-5:
Naming the

new query
SalesByBusiness.

CHAPTER 11 Making Queries Work Together 211

That is to say, both queries are sharing the extracted steps. You can see the new
SalesByBusiness query in the pane on the left, as shown in Figure 11-6. You now can
click on the SalesByBusiness query and start applying any needed transformations.

This concept of extracting steps can be a bit confusing. The bottom line is that
instead of starting from square one with a brand-new query, you’re telling Power
Query you want to create a new query that uses the steps you’ve already created.

When two or more queries share extracted steps, the query that contains the
extracted steps serves as the data source for the other queries. Because of this link,
the query that contains the extracted steps cannot be deleted. You have to first
delete all dependent queries before deleting the query that holds the extracted
steps.

Understanding the Append Feature
Power Query’s Append feature allows you to add the rows generated from one
query to the results of another query. In other words, you copy records from one
query and add them to the end of another.

The Append feature comes in handy when you need to consolidate multiple iden-
tical tables into one table. For example, if you have tables from the North, South,
Midwest, and West regions, you can consolidate the data from each region into
one table using the Append feature.

FIGURE 11-6:
The two queries
are now sharing

the extracted
steps.

212 PART 2 Wrangling Data with Power Query

To help you better understand the Append feature, I’ll walk you through an exer-
cise that consolidates data from four different regions into one table. In this walk-
through, I use the region data found on four different tabs in the Appending_Data.
xlsx sample file, shown in Figure 11-7.

You can find the Appending_Data.xlsx workbook in the sample files for this
book.

Creating the needed base queries
The Append feature works only on existing queries. That is to say, no matter what
kind of data sources you have, you need to import them into Power Query before
you can append them together. In this case, it means importing all the region
tables into queries.

Follow these steps to import the needed base queries:

1.	 Go to the North Data worksheet, place the cursor anywhere inside the
table, and then choose Data ➪ From Table/Range.

The Query Editor activates, showing you the contents of the table you just
imported.

To finalize the creation of the query, you need to close and load the query.
Now, because you’re creating this query simply for the purpose of appending
it to other queries, you don’t need to close and load to the workbook. You can
choose instead to close and load the data as connection-only.

FIGURE 11-7:
The data found
on each region

tab needs to
be consolidated

into one table.

CHAPTER 11 Making Queries Work Together 213

2.	 On the Home tab of the Query Editor, click the drop-down arrow under
the Close & Load command and select Close & Load To.

3.	 In the Import Data dialog box, choose the option Only Create Connection,
and then click the OK button.

4.	 Repeat Steps 1 through 3 for the other worksheets in the workbook.

After you’ve created queries for each region, open the Queries & Connections pane
(choose Data ➪ Queries & Connections in the Excel Ribbon) to see all queries. As
you can see in Figure 11-8, each query is a connection-only query.

Now that your data is in queries, you can start appending.

Appending the data
Follow these steps to append data from all other queries to the NorthData query:

1.	 In the Queries & Connections pane, right-click the NorthData query and
select Append.

The Append dialog box, shown in Figure 11-9, appears.

2.	 Choose the Three or More Tables option at the top of the dialog box.

The Append dialog box reconfigures to show two list boxes. The Available
Tables list (on the left) includes all the existing queries in your workbook. The
Tables to Append list (on the right) contains the query to which you’re currently
appending data (the NorthData query in this scenario).

FIGURE 11-8:
Create a

connection-only
query for each

region.

214 PART 2 Wrangling Data with Power Query

3.	 Select any query you want appended from the Available Tables list on the
left and add it to the Tables to Append list box on the right.

4.	 Click OK to confirm your selections.

The Power Query Editor launches, giving you the opportunity to review and
edit the results. You’ll notice Power Query creates a new query called Append1.

5.	 Rename the query in the Query Settings pane by typing ConsolidatedView
in the Name box.

6.	 Click the Close & Load button to save and exit the Power Query Editor.

Figure 11-10 illustrates the final output. You’ve successfully created a consolidated
table of region data.

Note in Figure 11-9 that the NorthData query is on both the Available Tables list
on the left and the Tables to Append list on the right. Be careful not to move the
NorthData query to the right list box by mistake. If you do, you’ll append the query
to itself, effectively duplicating all the records within the query. Unless you have
some strange requirement where creating exact copies of records is beneficial, you
will want to avoid appending the current query to itself.

As you append each query, you may be tempted to scroll down to the bottom of the
data to see the newly added records. Unfortunately, the data preview in the Query
Editor shows only a truncated sample set of records. Even if you scroll to the bot-
tom of the preview, you’re unlikely to see the appended data.

FIGURE 11-9:
Appending

multiple queries
to NorthData.

CHAPTER 11 Making Queries Work Together 215

FIGURE 11-10:
The final output.

BEWARE OF MISMATCHED COLUMN LABELS
When you append one query to another, Power Query first scans the column labels for
both queries to capture all column names. It then outputs all distinct column names
and consolidates the data from both queries into the appropriate columns. It uses the
column labels as a guide to knowing which data should be placed in which column.

If the column labels in your queries don’t match, Power Query consolidates data for any
match column, leaving null values in any columns that don’t match.

Imagine that you have one query with the column labels Region and Revenue, and
another query with the column labels Region and SalesAmount. Appending these two
records yields a final table with all three columns: Region, Revenue, and SalesAmount.
The records from the first query are entered into the Region and Revenue fields. The
records from the second query are entered into the Region and SalesAmount fields,
essentially leaving gaps in the Revenue and SalesAmount fields.

The bottom line is to make sure the column labels in your queries are identical before
appending. As long as the column labels in each query are identical, Power Query can
append the data correctly. Even if the columns in each query are positioned in a differ-
ent sequence, Power Query can use the column labels to get all the data into the correct
columns.

216 PART 2 Wrangling Data with Power Query

Understanding the Merge Feature
In your data adventures, you often find the need to build queries that join the data
between two tables. For example, you may want to join an employee table to a
transaction table to create a view that contains both transaction details and infor-
mation on the employees who logged those transactions.

In this section, I describe how you can leverage the Merge feature in Power Query
to join data from multiple queries.

Understanding Power Query joins
Similar to VLOOKUP or XLOOKUP in Excel, the Merge feature joins the records
from one query to the records in another by matching on a unique identifier. An
example of a unique identifier is Customer ID or Invoice Number.

You can join two data sets in one of several ways. The kind of join you apply is
important because it determines which records are returned from each data set.

Power Query supports six kinds of joins, as described in the following list and
shown in Figure 11-11:

»» Left Outer: Tells Power Query to return all records from the first query,
regardless of matching, and only those records from the second query that
have matching values in the joined field

»» Right Outer: Tells Power Query to return all records from the second query,
regardless of matching, and only those records from the first query that have
matching values in the joined field

»» Full Outer: Tells Power Query to return all records from both queries,
regardless of matching

»» Inner: Tells Power Query to return only those records from both queries that
have matching values

»» Left Anti: Tells Power Query to return only those records from the first query
that don’t match any of the records from the second query

»» Right Anti: Tells Power Query to return only those records from the first
query that don’t match any of the records from the second query

CHAPTER 11 Making Queries Work Together 217

Merging queries
To better understand the Merge feature, I’ll walk you through an exercise that
merges interview questions and answers. In this walk-through, I use the pre-
defined queries found in the Merging_Data.xlsx sample file available online at
www.dummies.com/go/excelpowerpivotpowerqueryfd2e.

As you can see in Figure 11-12, two existing queries are in the Queries & Connec-
tions pane: Questions and Answers. These queries represent the questions and
answers from the interview. The goal is to merge these two queries to create a new
table showing questions and answers side-by-side.

The Merge feature can be used only with existing queries. That is to say, no matter
what kind of data sources you have, you need to import them into Power Query
before you can use them in a merge.

FIGURE 11-11:
The kinds of joins

supported by
Power Query.

FIGURE 11-12:
You need to

merge the
Questions and

Answers queries
into one table.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd2e

218 PART 2 Wrangling Data with Power Query

Follow these steps to perform the merge:

1.	 Choose Data ➪   Get Data ➪   Combine Queries ➪   Merge (see Figure 11-13).

This step opens the Merge dialog box.

In this dialog box, you use the drop-down boxes to select the queries you want
to merge and then choose the columns that defined the unique identifier for
each record. In this case, the InterviewID and QuestionID/AnswerID fields
make up the unique identifier for each record.

2.	 Select the Questions query in the top drop-down box.

3.	 Hold down the Ctrl key on the keyboard, and then click InterviewID and
QuestionID — in that order.

4.	 Select the Answers query in the lower drop-down box.

5.	 Hold down the Ctrl key on the keyboard, and then click InterviewID and
AnswerID — in that order.

6.	 Use the Join Kind drop-down box to select the kind of join you want
Power Query to use. In this case, the default, Left Outer, works.

FIGURE 11-13:
Activating the

Merge dialog box.

CHAPTER 11 Making Queries Work Together 219

7.	 Click the OK button to finalize and open the Query Editor.

Figure 11-14 illustrates the completed Merge dialog box. Note the small
numbers 1 and 2 in the InterviewID and QuestionID fields. These small
numbers are assigned based on the order in which you selected them (refer to
Steps 3 and 5).

The order in which you selected the unique identifiers in each query matters.
The two columns tagged with the small number 1 will be joined regardless of
column labels. The two columns tagged with the small number 2 will also be
joined.

At the bottom of the Merge dialog box, Power Query shows you how many
records from the lower query match the top query, based on the unique
identifiers you selected. Taking a look at Figure 11-14 again, you’ll see about
17,600 answer records match the 26,910 question records. You don’t need a
100 percent match for the merge to be valid. There might be a good reason
that the records in the two queries don’t all match up. In this case, not all
questions were answered in all interviews, so the Answers query has fewer
records.

FIGURE 11-14:
The Completed

Merge dialog box.

220 PART 2 Wrangling Data with Power Query

8.	 With the new merged query open in the Query Editor, click the Expand
icon in the NewColumn field and choose the fields you want included in
the final output (as shown in Figure 11-15). In this case, just choose the
Answer field.

At this point, you can apply more transformations, if needed.

9.	 When you’re happy with the way things look, click the Close & Load
command to output the results to the workbook.

Figure 11-16 shows the final merged query.

FIGURE 11-15:
Expand the

NewColumn field
and choose the

merged fields you
want to output.

FIGURE 11-16:
The final table

with merged
questions and

answers.

CHAPTER 11 Making Queries Work Together 221

If you need to adjust or correct a merged query, right-click the query in the
Queries & Connections pane and select Edit. Once the Power Query Editor opens,
right-click the Source query step and select Edit Settings (see Figure 11-17). Alter-
natively, you can simply click the gear icon next to the Source query step. This
action opens the Merge dialog box, where the necessary changes can be applied.

Understanding Fuzzy Match
In some cases, the tables you need to merge won’t have any unique identifiers that
match exactly. In these situations, you can leverage Power Query’s Fuzzy Match
feature. In this walk-through, you’ll use the predefined Revenue and Employee
queries found in the FuzzyMatch.xlsx sample file.

Follow these steps to perform the merge:

1.	 Click Data ➪   Get Data ➪   Combine Queries ➪   Merge.

2.	 Select the Employee query in the top drop-down box, and then click the
Last_Name column.

3.	 Select the Revenue query in the lower drop-down box and click the
Employee column.

4.	 Use the Join Kind drop-down box to select the kind of join that you want
Power Query to use.

In this case, the default Left Outer works.

5.	 Select the Use Fuzzy Matching to Perform the Merge check box.

FIGURE 11-17:
Right-click the
Source query

step and select
Edit Settings to

reactivate the
Merge dialog box.

222 PART 2 Wrangling Data with Power Query

6.	 Click the arrow next to Fuzzy Matching Options to reveal the available
configuration options.

The Merge dialog box should look like the one shown in Figure 11-18. Here are
your options:

•	 Similarity Threshold: The Similarity Threshold tells Power Query how
similar two values need to be to match. The default value (applied if left
blank) is .80, which roughly translates to an 80 percent similarity. Entering
a value of 1 in the Similarity Threshold means you need the two values to
match 100 percent to qualify as a match. The minimum value you can
enter here is 0, but this causes all values to match each other. The number
you place here really depends on the data you’re using. In most cases, the
default of .80 is the safest bet, because it will match a decent number of
records without resulting in too many false matches.

•	 Ignore Case: The Ignore Case check box specifies what role character case
(uppercase, lowercase, and so on) plays in the matching. The default
behavior is case insensitive, which means case is ignored when matching
values. If you need to match values taking character case into account,
deselect the Ignore Case check box.

FIGURE 11-18:
The Merge dialog

box with Fuzzy
Matching
selected.

CHAPTER 11 Making Queries Work Together 223

•	 Match by Combining Text Parts: You can tell Power Query to try to
combine parts of text in each record to complete a match. For instance, if
one of your tables contains the value “star slight,” while the other table
contains the value “starlight,” Power Query will try to match “starlight” with
“stars light.” In other words, in addition to its normal matching algorithm, it
will combine text and try the match again.

•	 Maximum Number of Matches: This option defines the maximum
number of matching rows that will be returned for each record. For
example, if you only want to find one matching row for each record, you’ll
specify a value of 1. The default behavior is to return all matches.

•	 Transformation Table: In some cases, you may already have a mapping
table containing two values (in separate columns) which you’ve determined
should match automatically. You can import your mapping table in a
separate query, and then point to it in the Transformation table option.

7.	Enter .60 as the Similarity threshold.

Because you’re dealing with names that are fairly unique, you can risk a lower
similarity percent than the default.

8.	Enter 1 as the Maximum Number of Matches.

This will ensure that you only get one match per employee.

9.	Click the OK button to perform the merge and launch the Power Query
Editor.

10.	Now you can click the Expand icon next to the Revenue column and choose the
columns you want to be included in the final output. In this case, all you need is
the Revenue column.

11.	Click the Close & Load command to output the results to the workbook.

At the bottom of the Merge dialog box, Power Query shows you how many records
from the lower query match the top query based on the unique identifiers that you
selected. When using the fuzzy match feature, it’s often useful to try different
similarity thresholds to get more matches. You’ll find that trial and error will
often be necessary to find the right balance of matching as many records as pos-
sible without including too many false matches.

CHAPTER 12 Extending Power Query with Custom Functions 225

Chapter 12
Extending Power Query
with Custom Functions

Power Query records all actions using its own formula language (known as
the M language). When you connect to a data source and apply transforma-
tions to that data, Power Query diligently saves your actions as M code

behind the scenes in query steps. The transformation steps can then be repeated
when you refresh the data in your query.

That backstage coding is relatively transparent, and can, for the most part, be
ignored for most data processing activities. In this chapter, I show you how to lev-
erage the M language to extend the capabilities of Power Query to create your own
custom functions and perform truly heroic data processing.

Creating and Using a Basic
Custom Function

When building a custom function for Power Query, you’re essentially doing noth-
ing more than creating a query and manipulating its M code to return a desired
result. That result can be an array, a data table, or a single value.

IN THIS CHAPTER

»» Making a custom function

»» Using custom functions in other
queries

»» Creating a parameter query

226 PART 2 Wrangling Data with Power Query

To help you gain a sense of the general steps taken to create a custom function, I
show you now how to build a basic mathematical function that calculates profit.
This function should be able to take a revenue amount and a cost amount and out-
put a profit amount using this basic mathematical operation:

Revenue – Cost = Profit

For basic functions such as this one, you can start with a blank query and simply
enter the needed M code from scratch. Follow these steps:

1.	 Click the Data tab in Excel and select Get Data ➪   From Other Sources ➪   
Blank Query.

This step activates the Query Editor window.

2.	 On the Query Editor Ribbon, click on the View tab and select the
Advanced Editor command.

3.	 When the Advanced Editor window opens, delete the starter syntax you
see in the code input box.

4.	 Enter the following code into the code input box:

let Profit = (Revenue, Cost)=>
Revenue-Cost
in Profit

•	 Line 1 of the code tells Power Query that this is a function called Profit,
requiring two parameters. For clarity, the two parameters are named
Revenue and Cost, though Power Query doesn’t care what you name them
as long as the names start with a letter and have no spaces.

•	 Line 2 in the code essentially tells Power Query to subtract the Cost
parameter from the Revenue parameter.

•	 Line 3 of the code tells Power Query to return the result.

Figure 12-1 illustrates what the code looks like in the Advanced Editor window.

5.	 Click the Done button to close the Advanced Editor window.

6.	 In the Query Settings pane, change the name of the query in the Name
input box (see Figure 12-2) to FunctionProfit.

The goal here is to give your function a reasonably descriptive name, as
opposed to Query1.

CHAPTER 12 Extending Power Query with Custom Functions 227

7.	 At this point, you can select the Home tab of the Query Editor and click
the Close & Load button.

Power Query adds the query to the Queries & Connections pane as a connection-
only query. Queries recognized as functions are automatically saved as connection-
only. You can now use your function in other queries that contain revenue and cost
fields. For example, Figure 12-3 illustrates the contents of the Chapter12_Sample.
txt text file, which you can find in the download files for this book.

This text file contains a table of invoices with the fields Qty, UnitCost, and Unit-
Price. Your newly created function can be used to calculate profit using these
fields.

FIGURE 12-1:
Enter your

custom code in
the Advanced

Editor window.

FIGURE 12-2:
Give your custom

function a
friendly name.

228 PART 2 Wrangling Data with Power Query

To create a new query from this text file, follow these steps:

1.	 Click the Data tab in Excel and select Get Data ➪   From File ➪   From
Text/CSV.

This step opens the Import Data dialog box.

2.	 Browse for, and select, the Chapter12_Sample.txt file.

Power Query opens a preview of the data within the text file.

3.	 Click the Transform Data button to activate the Power Query Editor.

4.	 While in the Query Editor, click the Add Column tab and then click the
Custom Column button.

The Custom Column dialog box opens. Here, you can call the custom function
and pass it the needed parameters.

5.	 In this case, enter the following line:

= FunctionProfit([UnitPrice], [UnitCost])*[Quantity]

This syntax calls the FunctionProfit custom function and passes the UnitPrice
and UnitCost fields as the required parameters. The results are then multiplied
by the Quantity field. The Custom Column dialog box should look similar to the
one shown in Figure 12-4.

6.	 Click the OK button to apply the custom column.

When you confirm the changes, Power Query triggers the function and
calculates profit for each row in the data table (see Figure 12-5).

Although this example is quite basic, it demonstrates that you can define a func-
tion that requires parameters and then use the function in other queries. This
simple technique is the foundation for creating more useful functions.

FIGURE 12-3:
A text file

containing
Invoice details.

CHAPTER 12 Extending Power Query with Custom Functions 229

Power Query functions are stored in the workbook in which they reside. Unfortu-
nately, there’s no easy way to share functions between workbooks. If you start a
new workbook, you need to re-create your functions in that new workbook.

Creating a Function to Merge Data
from Multiple Excel Files

When building a basic function, such as the profit function you create in the ear-
lier section “Creating and Using a Basic Custom Function,” it’s no big deal to start
from a blank query and enter all the code from scratch. But for more complex
functions, it’s generally smarter to build a starter query via Query Editor and then
manipulate the M code to accomplish what you need.

FIGURE 12-4:
Use the Custom

Column action to
invoke your

function.

FIGURE 12-5:
The custom

column showing
the results of the
function for each
row in the table.

230 PART 2 Wrangling Data with Power Query

Imagine that you have a set of Excel files in a folder (see Figure 12-6). These files
all contain a worksheet named MySheet that holds a table of data. The tables in
each file have the same structure, but need to be combined into one file. This is a
common task/nightmare that most Excel analysts have faced at one time or
another. If you don’t have a solid knowledge of Excel VBA programming, this task
typically entails opening each file, copying the data on the MySheet tab, and then
pasting the data into a single workbook.

Power Query has the ability to make short work of this task, but it requires a bit of
direction via a custom function. Now, it would be difficult for most anyone to start
from a blank query and type out the M code for the relatively complex function
needed for this endeavor. Instead, you could build a starter query via Query Editor
and then wrap the query in a function.

To help you understand this concept, I present the following steps:

1.	 On the Excel Data tab, select Get Data ➪   From File ➪   From Workbook.

2.	 Browse to the folder that contains all the Excel files, and choose only one
of them.

3.	 In the Navigator pane (shown in Figure 12-7), choose the sheet that holds
the data that needs to be consolidated.

In this case, select MySheet then click the Transform Data button to open the
Query Editor.

4.	 Use the Query Editor to apply a few basic transformation actions to the
data.

As an example, the Applied Steps shown in Figure 12-8 shows some basic
transformation steps. For the purposes of this exercise, the specific steps you
choose to apply aren’t important.

FIGURE 12-6:
You need to

merge into one
table the data in
all the Excel files

in this folder.

CHAPTER 12 Extending Power Query with Custom Functions 231

5.	 Open Advanced Editor window by clicking the View tab and selecting the
Advanced Editor command.

Figure 12-9 demonstrates that as you build out the starter template, Power
Query diligently creates the bulk of the code for your function. Note in the
portion of the code that’s highlighted in gray (for illustration), Power Query has
hard-coded the file path and filename of the Excel file that was originally
selected. The idea is to wrap this starter code in a function that passes a
dynamic file path and filename.

FIGURE 12-7:
Connect to one of

the Excel files in
the target folder,

and navigate to
the sheet holding

the data that
needs to be

consolidated.

FIGURE 12-8:
Use the Query
Editor to apply
any necessary

transformation
actions.

232 PART 2 Wrangling Data with Power Query

6.	 Wrap the entire block of code with function tags, specifying that this
function requires two parameters: FilePath and FileName. Also replace
the hard-coded file path and filename with each respective parameter.

Here’s the syntax shown in Figure 12-10:

let GetMyFiles=(FilePath, FileName) =>
let
Source = Excel.Workbook(File.Contents(FilePath&FileName),

null, true),
MySheet1 = Source{[Name="MySheet"]}[Data],
#"Promoted Headers" = Table.PromoteHeaders(MySheet1,

[PromoteAllScalars=true]),
#"Removed Columns" =
Table.RemoveColumns(#"Promoted Headers",{"Branch_Number",

"Effective_Date"})
in
#"Removed Columns"

in GetMyFiles

7.	 Click Done to close the Advanced Editor.

As you can see in Figure 12-11, the Query Editor window contains two input
boxes for the two parameters we’ve defined (FilePath and FileName). This
query is officially a function that accepts two parameters.

8.	 In the Query Settings pane, change the name of the query in the Name
input box. Give the function a reasonably descriptive name, such as (in
this scenario) fnGetMyFiles.

FIGURE 12-9:
Open the
Advanced

Editor to see the
starter code.

CHAPTER 12 Extending Power Query with Custom Functions 233

9.	Click the Home tab of the Query Editor and click the Close & Load button.

At this point, the custom function is ready to be used on all files in the target folder.

10.	Click the Data tab in Excel and select Get Data ➪   From File ➪   From Folder,
browse to the folder that contains all the Excel files, and click the Open
button.

A new window appears to show you a table displaying all the files in the chosen
folder.

11.	Click the Transform Data button.

The Query Editor window activates to display a table containing a record for
each file in the chosen folder (see Figure 12-12). Each row contains attributes
for each of the files listed. The columns you’re interested in are Folder Path and
Name, which provide the function with the needed FilePath and FileName
parameters.

FIGURE 12-10:
Wrapping the

starter code with
function tags and

replacing the
hard-coded

names with your
dynamic

parameters.

FIGURE 12-11:
The Query Editor

after defining
parameters.

234 PART 2 Wrangling Data with Power Query

12.	Click the Add Column tab, and then click the Custom Column command.

The Custom Column dialog box opens.

13.	Invoke the function and pass the Folder Path and Name fields as param-
eters separated by commas (see Figure 12-13).

When you confirm your changes, Power Query triggers the function for each
row in the data table. The function itself grabs the data from each file and
returns a table array. Figure 12-14 shows the newly created custom column
with the Expand icon next to the column name.

FIGURE 12-12:
Create a new

query using the
From Folder

connection type
to retrieve a table

of all files in the
target folder.

FIGURE 12-13:
Use the Custom

Column action to
invoke the

function.

FIGURE 12-14:
Power Query

triggers the
function and

returns a table
array for each file

in the folder.

CHAPTER 12 Extending Power Query with Custom Functions 235

14.	Click the Expand icon for your new custom column.

You see a list of fields included in each table array, as shown in Figure 12-15.

15.	Choose which fields in the table array to show, select the Expand radio
button, and then click the OK button.

With each table array expanded, Power Query exposes the columns pulled
from each Excel file and adds the detailed records to the data preview.
Figure 12-16 illustrates the data preview for the final combined table.

16.	At this point, you can remove unneeded columns and then click the
Close & Load command to output the combined table.

FIGURE 12-15:
Click the Custom

column header
to expand the

table arrays.

FIGURE 12-16:
Power Query
exposes the

columns pulled
from each Excel

file and adds the
detailed records

to create the final
combined view.

236 PART 2 Wrangling Data with Power Query

As you look at the final combined view, don’t lose track of the fact that this rela-
tively complex task was facilitated by a simple custom function. For all the steps
required to accomplish this task, you expend very little effort on creating the code
for the function. Power Query writes the code for the core functionality, and you
simply wrap that code into a function.

The takeaway here is that you don’t have to be an expert on Power Query’s M
language to pull together effective and useful custom functions. You can leverage
the Query Editor to create some base code and then adjust from there.

Creating Parameter Queries
A parameter query is a kind of query that relies on one or more parameters to run.
Although that sounds suspiciously like the custom functions covered earlier in
this chapter (after all, they ran on parameters), there is a subtle difference.

A parameter query is one where you provide the parameters. So rather than have
the parameters come from a predefined query, you enter the parameters. This
comes in handy when creating interactive reporting for others to consume.

In this section, I walk you through creating your first parameter query.

Preparing for a parameter query
To create a proper parameter query, you first have to understand the parameters
necessary to make your reporting interactive. The best way to gain this under-
standing is to explore the target data source.

In this scenario, I tell you how to build an interactive view of the top-grossing
films for any given year and month. To accomplish this task, leverage the Box
Office Mojo website. Box Office Mojo provides an array of box office reporting
tools, including a monthly index of top-grossing films.

The URL for the monthly index includes a month parameter and a year parameter.
Enter this URL into any browser and you see a list of the top-grossing films of
January 2020:

www.boxofficemojo.com/month/january/2020/

A look at the website (shown in Figure 12-17) confirms that the URL opens a web
page that contains the table you would expect to see: an index of movies for Janu-
ary 2020 box office. The parameters in the URL are working as expected.

https://www.boxofficemojo.com/month/january/2020/

CHAPTER 12 Extending Power Query with Custom Functions 237

Now that you know the year and month number are the parameters, you can get
started.

FIGURE 12-17:
Confirming

that the
parameters

in the URL
actually work.

THE IMPORTANCE OF KNOWING
YOUR PARAMETERS
You may notice that the Box Office Mojo web service only returns results when the
name is all lowercase. Enter the following URL into your favorite web browser, and you
get results:

www.boxofficemojo.com/month/may/2021

Entering the following URL, and you get nothing back:

www.boxofficemojo.com/month/May/2021

This is a good example of knowing what parameters the source database is expecting
and in what form. In this case, the Box Office Mojo web service is clearly expecting low-
ercase month names. Now that you know that, you can make sure the month names
you pass are lowercase.

http://www.boxofficemojo.com/month/may/2021
http://www.boxofficemojo.com/month/May/2021

238 PART 2 Wrangling Data with Power Query

Creating the base query
The best place to start is to create the base query. The base query is essentially the
one that will pull the data you’re working toward. In this scenario, you create a
query that pulls the table shown in Figure 12-16 from the Box Office Mojo website.

Follow these steps:

1.	 Open a new Excel workbook, and then select Data ➪   Get Data ➪   From
Other Sources ➪   From Web.

2.	 Enter a starting URL and then click OK. You can use the following URL:

www.boxofficemojo.com/month/january/2020

3.	 Use the Navigator pane to select the table containing the data you need
(Table0 in this case), and then click the Transform Data button to open
the Query Editor.

4.	 Use the Query Editor to apply any desired transformations.

Figure 12-18 illustrates a clean table that makes up the base query.

5.	 Open the Advanced Editor window by clicking the View tab and selecting
the Advanced Editor command.

6.	 Wrap the entire block of code with function tags, specifying that this
function requires two parameters: YearNum and MonthName. Also
replace the hard-coded year and month in the URL with each respective
parameter.

Here’s the final syntax shown in Figure 12-19:

let TopMovies=(YearNum, MonthName) =>
let

FIGURE 12-18:
The clean

base query.

http://www.boxofficemojo.com/month/january/2020

CHAPTER 12 Extending Power Query with Custom Functions 239

Source = Web.Page(Web.Contents("www.boxofficemojo.com/
month/" &

MonthName & "/" & Number.ToText(YearNum) & "/")),
Data0 = Source{0}[Data],
#"Removed Other Columns" = Table.

SelectColumns(Data0,{"Rank", "Release", "Gross",
"Theaters", "Total Gross", "Release Date",
"Distributor"})

in
 #"Removed Other Columns"

in TopMovies

7.	 Click Done to close the Advanced Editor.

8.	 In the Query Settings pane, change the name of the query in the Name
input box. In this scenario, it’s fnGetTopMovies.

9.	 Click the Home tab of the Query Editor and click the Close & Load button.

You now have a fnGetTopMovies function, which can be used to pull web data
from a custom function, and it’s ready to be used on all files in the target folder.

Creating the parameter query
The final step is to create the parameter query. To do so, you need a simple table
that will serve as the feeder for your dynamic parameters.

FIGURE 12-19:
Wrapping the

starter code with
function tags and

specifying a
YearNum

parameter and a
MonthName

parameter.

240 PART 2 Wrangling Data with Power Query

Staying in the same workbook where you created fnGetTopMovies, create a table
similar to the one shown in Figure 12-20.

From here, follow these steps:

1.	 Place the cursor in the parameter table, and then select Data ➪   From
Table/Range.

The Create Table dialog box opens.

2.	 Click OK to continue.

The Query Editor opens with the parameter table.

3.	 Click the Add Column tab, and then click the Custom Column command.

4.	 In the Custom Column dialog box, invoke the fnGetTopMovies function,
passing the year and month fields as parameters (see Figure 12-21), and
click OK.

Because you’re mixing data from the web with data from Excel (though the
parameter table can hardly be considered data), Power Query initiates a yellow
security bar asking you for more information on data-privacy settings.

FIGURE 12-20:
Create a simple

parameter table.

FIGURE 12-21:
Use the Custom

Column action to
invoke the

function.

CHAPTER 12 Extending Power Query with Custom Functions 241

5.	Click the Continue button inside the yellow security bar.

The Privacy Levels dialog box opens, as shown in Figure 12-22.

6.	Select Public for both the Current Workbook option and the website.
Click the Save button to confirm and save the privacy levels.

Power Query, at this point, imports data from the website based on the year
and month in the parameter table.

7.	The data imports as a table array, so click the green Table hyperlink.

Alternatively, you can click the Expand icon.

Now that you’re basically done, it’s time to think about where the query should
be loaded. If you simply click the Close & Load button, Power Query outputs
the final parameter query in its own worksheet. However, it would be more
practical to have the parameter table and query results on the same work-
sheet. This way, you can edit the parameters and see the results without
having to flip between worksheets.

8.	Rather than click the Close & Load command button, click the drop-down
arrow beneath the button and select the Close & Load To option.

9.	In the Import Data dialog box, choose the Existing Worksheet option,
ensuring that you select a cell beneath the parameter table. (See
Figure 12-23.)

10.	Click the OK button to finalize the query (see Figure 12-23).

FIGURE 12-22:
The combining of

Excel and Web
data triggers
Power Query
to ask about
data privacy.

242 PART 2 Wrangling Data with Power Query

Figure 12-24 illustrates the final parameter query. Take a moment to think about
what’s happening here. With this parameter query, you enter a year and a month
and click Refresh (or press Ctrl+Alt+F5). Power Query then dynamically imports
data back from the internet based on the parameters you entered — all without
your having to enter more than three lines of M language syntax. Truly amazing.

FIGURE 12-23:
Choose to load
the final query

results under the
parameters table.

FIGURE 12-24:
The final

parameter query
provides an

interactive
mechanism to

flexibly pull data
based on
dynamic

parameters,
all with virtually

no coding.

3The Part of Tens

IN THIS PART . . .

Explore some best practices that can help you avoid
Power Pivot performance issues.

Examine a few tips and tricks that can save you time
when working with Power Query.

CHAPTER 13 Ten Ways to Improve Power Pivot Performance 245

Chapter 13
Ten Ways to
Improve Power
Pivot Performance

The word performance (as it relates to applications and reporting) is typically
synonymous with speed — or how quickly an application performs certain
actions such as opening within the browser, running queries, or filtering.

Because Power Pivot inherently paves the way for large amounts of data with
fairly liberal restrictions, it isn’t uncommon to produce reporting solutions that
work but are unbearably slow. And nothing will turn your intended audience away
from your slick new reports faster than painfully sluggish performance.

This chapter offers ten actions you can take to optimize the performance of your
Power Pivot reports.

IN THIS CHAPTER

»» Improving Power Pivot performance

»» Best practices for avoiding lag

»» Managing slicer performance

»» Using views versus tables

246 PART 3 The Part of Tens

Limit the Number of Rows and Columns
in Your Data Model Tables

One huge influence on Power Pivot performance is the number of columns you
bring, or import, into the data model. Every column you import is one more dimen-
sion that Power Pivot has to process when loading a workbook. Don’t import extra
columns “just in case” — if you’re not certain you will use certain columns, just
don’t bring them in. These columns are easy enough to add later if you find that
you need them.

More rows mean more data to load, more data to filter, and more data to calculate.
Avoid selecting an entire table if you don’t have to. Use a query or a view at the
source database to filter for only the rows you need to import. After all, why
import 400,000 rows of data when you can use a simple WHERE clause and import
only 100,000?

Use Views Instead of Tables
Speaking of views, for best practice, use views whenever possible.

Though tables are more transparent than views — allowing you to see all the raw,
unfiltered data — they come supplied with all available columns and rows,
whether you need them or not. To keep your Power Pivot data model to a manage-
able size, you’re often forced to take the extra step of explicitly filtering out the
columns you don’t need.

Views can not only provide cleaner, more user-friendly data but also help stream-
line your Power Pivot data model by limiting the amount of data you import.

Avoid Multi-Level Relationships
Both the number of relationships and the number of relationship layers have an
impact on the performance of your Power Pivot reports. When building your model,
follow best practice and have a single fact table containing primarily quantitative
numerical data (facts) and dimension tables that relate to the facts directly. In the
database world, this configuration is a star schema, as shown in Figure 13-1.

CHAPTER 13 Ten Ways to Improve Power Pivot Performance 247

Avoid building models where dimension tables relate to other dimension tables.
Figure 13-2 illustrates this configuration, also known as a snowflake schema. This
configuration forces Power Pivot to perform relationship lookups across several
dimension levels, which can be particularly inefficient, depending on the volume
of data in the model.

Let the Back-End Database Servers
Do the Crunching

Most Excel analysts who are new to Power Pivot tend to pull raw data directly
from the tables on their external database servers. After the raw data is in Power
Pivot, they build calculated columns and measures to transform and aggregate the
data as needed. For example, users commonly pull revenue and cost data and then
create a calculated column in Power Pivot to compute profit.

FIGURE 13-1:
A star schema is

the most efficient
data model,

with a single fact
table and

dimensions
relating

directly to it.

FIGURE 13-2:
Snowflake

schemas are less
efficient, causing

Power Pivot to
perform chain

lookups.

248 PART 3 The Part of Tens

So why make Power Pivot do this calculation when the back-end server could have
handled it? The reality is that back-end database systems such as SQL Server have
the ability to shape, aggregate, clean, and transform data much more efficiently
than Power Pivot. Why not utilize their powerful capabilities to massage and
shape data before importing it into Power Pivot?

Rather than pull raw table data, consider leveraging queries, views, and stored
procedures to perform as much of the data aggregation and crunching work as
possible. This leveraging reduces the amount of processing that Power Pivot will
have to do and naturally improves performance.

Beware of Columns with
Many Unique Values

Columns that have a high number of unique values are particularly hard on Power
Pivot performance. Columns such as Transaction ID, Order ID, and Invoice Num-
ber are often unnecessary in high-level Power Pivot reports and dashboards. So
unless they are needed to establish relationships to other tables, leave them out of
your model.

Limit the Number of Slicers in a Report
The slicer is one of the best new business intelligence (BI) features of Excel in
recent years. Using slicers, you can provide your audience with an intuitive inter-
face that allows for interactive filtering of your Excel reports and dashboards.

One of the more useful benefits of the slicer is that it responds to other slicers,
providing a cascading filter effect. For example, Figure 13-3 illustrates not only
that clicking on Midwest in the Region slicer filters the pivot table but that the
Market slicer also responds, by highlighting the markets that belong to the Mid-
west region. Microsoft calls this behavior cross-filtering.

As useful as the slicer is, it is, unfortunately, extremely bad for Power Pivot per-
formance. Every time a slicer is changed, Power Pivot must recalculate all values
and measures in the pivot table. To do that, Power Pivot must evaluate every tile
in the selected slicer and process the appropriate calculations based on the
selection.

CHAPTER 13 Ten Ways to Improve Power Pivot Performance 249

Take this process a step further and imagine adding a second slicer: Because slic-
ers cross-filter, each time you click one slicer, the other one changes also, so it’s
almost as though you clicked both of them. Power Pivot must now respond to both
slicers, evaluating every tile in both slicers for each calculated measure in the
pivot. Adding a second slicer effectively doubles the processing time. Add a third
slicer, and you triple the processing time.

In short, a slicer is generally bad for Power Pivot performance. However, as men-
tioned at the beginning of this section, the functionality that the slicer brings to
Excel BI solutions is too good to give up completely.

You can help to mitigate performance issues by limiting the number of slicers in
your Power Pivot reports. Remove slicers one at a time, testing the performance of
the Power Pivot report after each removal. You’ll find that removing a single slicer
is often enough to correct performance issues.

Remove slicers that have low click rates. Some slicers hold filter values that,
frankly, may never be utilized by your audience. For example, if a slicer allows
your audience to filter by the current year or by last year, and the last year view is
not often called up, consider removing the slicer or using the Pivot Table Filter
drop-down list instead.

Create Slicers Only on Dimension Fields
Slicers tied to columns that contain lots of unique values will often cause a larger
performance hit than columns containing only a handful of values. If a slicer con-
tains a large number of tiles, consider using a Pivot Table Filter drop-down list
instead.

FIGURE 13-3:
Slicers work

together to show
relevant data
items based

on a selection.

250 PART 3 The Part of Tens

On a similar note, be sure to right-size column data types. A column with few dis-
tinct values is lighter than a column with a high number of distinct values. If
you’re storing the results of a calculation from a source database, reduce the
number of digits (after the decimal) to be imported. This reduces the size of the
dictionary and, possibly, the number of distinct values.

Disable the Cross-Filter Behavior for
Certain Slicers

Disabling the cross-filter behavior of a slicer essentially prevents that slicer from
changing selections when other slicers are clicked. This prevents the need for
Power Pivot to evaluate the titles in the disabled slicer, thus reducing processing
cycles. To disable the cross-filter behavior of a slicer, select Slicer Settings to open
the Slicer Settings dialog box, shown in Figure 13-4. Then simply deselect the
Visually Indicate Items with No Data option.

Use Calculated Measures Instead of
Calculated Columns

Use calculated measures instead of calculated columns, if possible. Calculated col-
umns are stored as imported columns. Because calculated columns inherently
interact with other columns in the model, they calculate every time the pivot table
updates, whether they are being used or not. Calculated measures, on the other
hand, calculate only at query time.

FIGURE 13-4:
Deselecting the

Visually Indicate
Items option with
No Data disables

the slicer’s
cross-filter

behavior.

CHAPTER 13 Ten Ways to Improve Power Pivot Performance 251

Calculated columns resemble regular columns in that they both take up space in
the model. In contrast, calculated measures are calculated on the fly and do not
take space.

Upgrade to 64-Bit Excel
The suggestion in this section is somewhat obvious. If you continue to run into
performance issues with your Power Pivot reports, you can always buy a better
PC — in this case, by upgrading to a 64-bit PC with 64-bit Excel installed.

Power Pivot loads the entire data model into RAM whenever you work with it. The
more RAM your computer has, the fewer performance issues you see. The 64-bit
version of Excel can access more of your PC’s RAM, ensuring that it has the system
resources needed to crunch through bigger data models. In fact, Microsoft recom-
mends 64-bit Excel for anyone working with models made up of millions of rows.

But before you hurriedly start installing 64-bit Excel, you need to answer these
questions:

»» Do you already have 64-bit Excel installed? You can find out by opening
Excel and choosing File ➪   Account ➪   About Excel. A dialog box opens,
specifying either 32-bit or 64-bit at the top.

»» Are your data models large enough? Unless you’re working with large data
models, the move to 64-bit may not produce a noticeable difference in your
work. How large is large? A Power Pivot workbook with a file size upward of 40
megabytes is considered large. If your workbook is 50 or more megabytes,
you would definitely benefit from an upgrade.

»» Do you have a 64-bit operating system installed on your PC? The 64-bit
version of Excel will not install on a 32-bit operating system. You can find out
whether you’re running a 64-bit operating system by searching for the text My
PC 64-bit or 32-bit at your favorite search engine. You’ll see loads of sites that
can walk you through the steps to determine your version.

»» Will your other add-ins stop working? If you’re using other add-ins, be
aware that some of them may not be compatible with 64-bit Excel. You
wouldn’t want to install 64-bit Excel just to find that your trusted add-ins no
longer work. Contact your add-in providers to ensure that they are 64-bit
compatible. By the way, this advice includes add-ins for all Office products —
not just Excel. When you upgrade Excel to 64-bit, you also have to upgrade the
entire Office suite.

CHAPTER 14 Ten Tips for Working with Power Query 253

Chapter 14
Ten Tips for Working
with Power Query

Over the past few years, Microsoft has added countless features to Power
Query. It has truly become a rich tool set with multiple ways to perform
virtually any action you can think of. This growth in functionality has

paved the way to a good number of tips and tricks that can help you work more
efficiently with your Power Query models.

This chapter presents ten of the more useful tips and tricks you can leverage to get
the most out of Power Query.

Getting Quick Information from the
Queries & Connections Pane

All the Power Query queries that live in a particular workbook can be viewed in the
Queries & Connections pane. Choose Data ➪ Show Queries to activate the Queries &
Connections pane.

IN THIS CHAPTER

»» Getting information from the
Queries & Connections pane

»» Organizing queries

»» Referencing and duplicating queries

»» Configuring Power Query options

»» Viewing query dependencies

254 PART 3 The Part of Tens

In this pane, you can see some quick information about a query by simply hover-
ing the cursor over it. You can see the data source for the query, the last time the
query was refreshed, and a sneak peek of the data within the query. You can even
click on column hyperlinks to peek at a particular column (see Figure 14-1).

It’s always smart to reuse work wherever you can. Save time by duplicating the
queries in your workbook. To do so, activate the Queries & Connections pane,
right-click the query you want to copy, and then select Duplicate.

Organizing Queries in Groups
As you add queries to your workbook, your Queries & Connections pane may start
to feel cluttered and disorganized. Do yourself a favor and organize your queries
into groups.

FIGURE 14-1:
Hover the cursor

over a query to
get quick

information,
including sneak

peeks of column
contents.

CHAPTER 14 Ten Tips for Working with Power Query 255

Figure 14-2 illustrates the kinds of groups you can create. You can create a group
only for custom functions or a group for queries sourced from external databases.
You could even create a group where you store small reference tables. Each group
is collapsible, so you can neatly pack away queries that you aren’t working with.

You can create a group by right-clicking a query in the Queries & Connections
pane and selecting Move To Group ➪ New Group. To move a query to an existing
group, right-click the query in the Queries & Connections pane, hover over Move
To Group, and then select the group in which you want to see the target query.
Right-clicking the group name will expose a set of options for managing the
group itself.

Selecting Columns in Queries Faster
When dealing with a large table with dozens of columns in the Query Editor, it can
be a pain to find and select the right columns to work with. You can avoid all that
scrolling back and forth by choosing the Choose Columns command on the
Home tab.

The dialog box shown in Figure 14-3 opens, showing you all available columns
(including custom columns you may have added). You can easily find and select
the columns you need.

FIGURE 14-2:
Queries can be
organized into

groups.

256 PART 3 The Part of Tens

Renaming Query Steps
Every time you apply an action in the Query Editor, a new entry is made in the
Query Settings pane, as shown in Figure 14-4. Query steps serve as a kind of audit
trail for all the actions you’ve taken on the data.

FIGURE 14-3:
Use the Choose

Columns
command to

find and select
columns faster.

FIGURE 14-4:
Get in the

habit of renaming
applied steps.

CHAPTER 14 Ten Tips for Working with Power Query 257

Query steps are automatically given generic names like Uppercased Text or Merged
Columns. Why not take the time to add some clarity on what each step is doing?
You can rename your steps step by right-clicking each step and selecting Rename.

Quickly Creating Reference Tables
A handful of columns in a data set always make for fantastic reference tables. For
instance, if your data set contains a column with a list of product categories, it
would be useful to create a reference table of all the unique values in that column.

Reference tables are often used to map data, feed menu selectors, serve as lookup
values, and much more.

While in the Query Editor, you can right-click the column from which you want
to create a reference table and then select Add as New Query, as shown in
Figure 14-5.

FIGURE 14-5:
Create a new

query from an
existing column.

258 PART 3 The Part of Tens

A new query is created, using the table you just pulled from as the source. The
Query Editor jumps into action, showing only the column you selected. From here,
you can use the Query Editor to clean up duplicates or remove blanks, for example.

Viewing Query Dependencies
On the View tab of the Power Query Editor window, you’ll see the Query Depen-
dencies command. Clicking this command activates the Query Dependencies dia-
log (see Figure 14-6), where you see a diagram displaying each of the queries in
your workbook. Queries that rely on other queries have a line connecting them.
This feature comes in handy when adopting someone else’s workbook or even
refreshing your memory about a workbook you worked on previously.

Truth be told, the utility of this feature is a bit limited. You can change the zoom
and layout of the diagram, but you won’t be able to move the objects around. As
far as printing goes, you’ll have to resort to screenshots, because Power Query
doesn’t offer a print feature.

FIGURE 14-6:
The Query

Dependencies
dialog box

displays how
each of your

queries interacts
with one another.

CHAPTER 14 Ten Tips for Working with Power Query 259

Setting a Default Load Behavior
If you’re working heavily with Power Pivot and with Power Query, chances are
good that you load your Power Query queries to the Internal Data Model a majority
of the time.

If you’re one of those analysts who always loads to the Data Model, you can tweak
the Power Query options to automatically load to the Data Model.

Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in
Figure 14-7. Select Data Load in the Global section, select the Specify Custom
Default Load Settings option button, and then select the Load to Data Model check
box. This enables the options to load to the worksheet or Data Model by default.

Preventing Automatic Data Type Changes
One of the more recent additions to Power Query is the ability to automatically
detect data types and to proactively change data types. This type detection is most
often applied when new data is introduced to the query.

For instance, Figure 14-8 shows the query steps after importing a text file. Note
the Changed Type step, which was automatically performed by Power Query as
part of its type detection feature.

Although Power Query does a decent job at guessing what data types should be
used, applied data type changes can sometimes cause unexpected issues.

FIGURE 14-7:
Use the Global

Data Load
options to set a

default load
behavior.

260 PART 3 The Part of Tens

Some veterans of Power Query, frankly, find the type detection feature annoying. If
data types need to be changed, they want to be the ones to make that determination.

If you’d rather handle data type changes without help from Power Query’s type
detection feature, you can turn it off.

Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in
Figure 14-9. Select Data Load in the Current Workbook section, and then deselect
the option to automatically detect column types and headers for unstructured
sources.

FIGURE 14-8:
Power Query
automatically

adds a step to
change data

types when data
is imported.

FIGURE 14-9:
Disabling the type
detection feature.

CHAPTER 14 Ten Tips for Working with Power Query 261

Disabling Privacy Settings to
Improve Performance

The privacy-level settings in Power Pivot (explored in Chapter 11) are designed to
protect organizational data as it gets combined with other sources. When you cre-
ate a query that uses an external data source with an internal data source, Power
Query stops the show to ask how you want to categorize the data privacy levels of
each data source.

For a majority of analysts, who deal solely with organizational data, the privacy-
level settings do little more than slow down queries and cause confusion.

Fortunately, you have the option to ignore privacy levels.

Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in
Figure 14-10. Select Privacy in the Current Workbook section, and then choose the
option to ignore privacy levels.

Disabling Relationship Detection
When you’re building a query and choosing Load to Data Model as the output,
Power Query, by default, attempts to detect relationships between queries and
creates those relationships within the Internal Data Model. The relationships
between queries are primarily driven by the defined query steps. For instance, if
you were to merge two queries and then load the result into the Data Model, a
relationship would be automatically created.

FIGURE 14-10:
Disabling the
privacy-level

settings.

262 PART 3 The Part of Tens

In larger data models with a dozen or so tables, Power Query’s relationship detec-
tion can affect performance and increase the time it takes to load the Data Model.

You can avoid this hassle and even gain a performance boost by disabling rela-
tionship detection.

Choose Data ➪ Get Data ➪ Query Options to open the dialog box shown in
Figure 14-11. Select Data Load in the Current Workbook section, and then deselect
the option to create relationships when adding loading to the Data Model.

FIGURE 14-11:
Disabling

relationship
detection.

Index 263

Index
Symbols
- operator, 126
! operator, 126
* operator, 126
/ operator, 126
&& operator, 126
^ operator, 126
+ operator, 126
< operator, 126
= operator, 126
|| operator, 126
> operator, 126

A
actions

Add as New Query, 156
Add Column From Examples, 155, 158
Add Conditional Column, 158
Add Custom Column, 158
Add Index Column, 158
Append Queries, 158
Change Type, 155
Choose Columns, 158
column-level, 155–157
Create Data Type, 156
Drill Down, 156
Duplicate Column, 155
Fill, 156
Group By, 156
Keep Bottom Rows, 158
Keep Duplicates, 158
Keep Errors, 158
Keep Range of Rows, 158
Keep Top Rows, 158

Merge Column, 156
Merge Queries, 158
Move, 156
Remove, 155
Remove Alternate Rows, 158
Remove Bottom Rows, 158
Remove Duplicates, 155, 158
Remove Errors, 155, 158
Remove Other Columns, 155
Remove Top Rows, 158
Rename, 156
Replace Errors, 156
Replace Values, 156
Split Column, 156
table, 157–158
Transform, 155
Unpivot Other Columns, 156
Unpivot Selected Columns, 156
Use First Row as Headers, 158

Add as New Query action, 156
Add Column From Examples action, 155, 158
Add Conditional Column action, 158
Add Custom Column action, 158
Add Custom Column dialog box, 194, 200–201
Add Index Column action, 158
adding

conditional logic to custom columns, 199–201
Excel tables to data model, 22–24
formulas to Power Pivot, 103–120
report filters, 37–38

adjusting
case, 181
pivot table layouts, 40–41
pivot tables, 36–37
summary calculations, 43–44

264 Microsoft Excel Power Pivot & Power Query For Dummies

Advanced Query Editor, 151
aggregate functions, 128–129
aggregate view, 201
aggregating data, 201–202
ampersand (&), DAX operators and, 126
analytical processes, transparency of, 9
AND operator, 126
Append dialog box, 213–214
Append feature

about, 211–212
appending data, 213–215
creating base queries, 212–213

Append Queries action, 158
appending data, 213–215
applying

conditional logic in DAX, 126–128
numeric formats to data fields, 42–43

automatic refreshing, setting up, 84–85
AVERAGE function, 43, 110, 128–129
AVERAGEX function, 131–132
Azure databases, 165, 166

B
back-end database servers, 247–248
BI Blog, 138
building

base queries, 212–213, 238–239
calculated columns, 104–105
calculated measures, 116–118
custom columns, 193–201
custom functions in Power Query, 225–229
custom functions to merge data from multiple

Excel files, 229–236
DAX-driven calculated columns, 110–111
parameter queries, 236–242
pivot tables, 33–39
pivot tables using Internal Data Model, 97–98
reference tables, 257–258
relationships between Power Pivot tables, 24–26
slicers, 249–250
standard slicers, 54–56
timeline slicers, 59–61

C
CALCULATE function, 135–137
calculated columns, 250–251
calculated measures

about, 116
creating, 116–118
deleting, 118–119
editing, 118–119
using instead of calculated columns, 250–251

case, changing, 181
case-sensitivity, in DAX, 125
Change PivotTable Data Source dialog box, 39
Change Type action, 155
changing

case, 181
pivot table layouts, 40–41
pivot tables, 36–37
summary calculations, 43–44

character markers, splitting columns using,
187–189

Cheat Sheet (website), 4
Choose Columns action, 158
Choose Columns command, 255–256
Clean command, 183–184
cleaning text, 183–184
Clipboard, loading data from, 81–82
column area, of pivot tables, 31–32
column-level actions, 155–157
columns

about, 12
adding conditional logic to custom, 199–201
applying numeric formats to, 42–43
calculated, 250–251
concatenating, 179–181
concatenating with custom, 195–196
creating calculated, 104–105
creating custom, 193–201
customizing names, 41–42
dimension, 249–250
enhancing Power Pivot data with calculated,

103–108
filling in blank, 178

Index 265

formatting calculated, 105–106
hiding calculated, from end users, 107–108
limiting number of in data model tables, 246
with many unique values, 248
mismatched labels, 215
pivoting, 189–193
referencing from other pivot tables, 113–115
referencing in other calculations, 106–107
selecting in queries, 255–256
splitting using character markers, 187–189
unpivoting, 189–193
using functions in custom, 197–199
utilizing DAX to create calculated, 108–115

commands
Choose Columns, 255–256
Clean, 183–184
Custom Column, 193
Extract, 185
Merge Columns, 179–180, 195–196
Pivot Columns, 192–193
Queries & Connections, 84, 86
Refresh, 83–84
Refresh All, 85–86
Remove Duplicates, 177
Trim, 183–184
Unpivot Columns, 190–191
Unpivot Other Columns, 191–192

comma-separated value (CSV) files, getting data
from, 161–162

comparison operators, 126
compatibility, 20
concatenating

columns, 179–181
with custom columns, 195–196

conditional logic
adding to custom columns, 199–201
applying in DAX, 126–128

Connection Properties dialog box, 84–85
controlling

connections, 96
data source settings, 170–171

existing queries, 153–154
external data connections, 83–87
multiple pivot tables with one slicer, 58–59
queries, 96
relationships, 26–27
relationships in Internal Data Model, 95–96

COUNT function, 43, 110, 129
Count Numbers function, 43
COUNTA function, 129
COUNTBLANK function, 129
COUNTROWS function, 129
Create Data Type action, 156
Create Data Type dialog box, 203–204
Create PivotTable dialog box, 33–36, 90–91,

97, 123
Create Table dialog box, 21–22, 240
creating

base queries, 212–213, 238–239
calculated columns, 104–105
calculated measures, 116–118
custom columns, 193–201
custom functions in Power Query, 225–229
custom functions to merge data from multiple

Excel files, 229–236
DAX-driven calculated columns, 110–111
parameter queries, 236–242
pivot tables, 33–39
pivot tables using Internal Data Model, 97–98
reference tables, 257–258
relationships between Power Pivot tables, 24–26
slicers, 249–250
standard slicers, 54–56
timeline slicers, 59–61

cube functions, 119–120
Custom Column command, 193
Custom Column dialog box, 193, 228, 240
Custom Data feature (Power Query), 203–205
customizing

field names, 41–42
pivot table reports, 40–52
slicers, 56–58

266 Microsoft Excel Power Pivot & Power Query For Dummies

D
data. See also external data

aggregating, 201–202
appending, 213–215
getting from CSV files, 161–162
getting from Excel workbooks, 160–161
getting from folders, 164–165
getting from other data systems, 167–169
getting from PDF files, 163
getting from text files, 161–162
grouping, 201–202
importing from database systems, 165–169
importing from files, 160–165
loading from Clipboard, 81–82
loading from external Excel files, 76–78
loading from flat files, 75–82
loading from Microsoft Access databases, 70–72
loading from other data sources, 82–83
loading from other relational database systems,

72–75
loading from relational databases, 64–75
loading from SQL Server, 64–70
loading from text files, 78–80
separation of presentation and, 10–11

Data Analysis Expressions (DAX)
about, 121
aggregate functions, 128–129
applying conditional logic in, 126–128
CALCULATE function, 135–137
filter context, 133–139
FILTER function, 137–139
iterator functions and row content, 129–132
language fundamentals, 121–132
operators, 125–126
utilizing to create calculated columns, 108–115

data connections
editing, 86–87
managing, 96
Power Query types, 159–174
refreshing and managing external, 83–87

data items
columns for, 57–58
showing/hiding, 47–49

Data Link Properties dialog box, 73–74
data model, using in reporting, 27–28
data profiling

about, 171–172
options for, 172–173
quick actions, 173–174

Data Source Settings dialog box, 170–171
data sources, managing settings, 170–171
data transformation

about, 175
adding conditional logic to custom columns,

199–201
aggregating data, 201–202
changing case, 181
concatenating columns, 179–181
concatenating with custom columns, 195–196
creating custom columns, 193–201
custom data types, 203–205
data type conversions, 196–197
extracting left, right, and middle values, 184–187
filling in blank fields, 178–179
filling in empty strings, 179
finding and replacing specific text, 181–183
grouping data, 201–202
pivoting fields, 189–193
removing duplicate records, 176–178
replacing null values, 178–179
splitting columns using character markers,

187–189
tasks for, 176–193
trimming and cleaning text, 183–184
unpivoting fields, 189–193
using functions with custom columns, 197–199

data types
conversions, 196–197
custom, 203–205
preventing automatic changes, 259–260

database servers, back-end, 247–248
database systems, importing data from, 165–169
databases

about, 11
benefits of, 7–11
terminology for, 11–13

Index 267

DAX (Data Analysis Expressions)
about, 121
aggregate functions, 128–129
applying conditional logic in, 126–128
CALCULATE function, 135–137
filter context, 133–139
FILTER function, 137–139
iterator functions and row content, 129–132
language fundamentals, 121–132
operators, 125–126
utilizing to create calculated columns, 108–115

deleting
calculated measures, 118–119
duplicate records, 176–178
subtotals, 45–47

dependencies, query, 258
dialog boxes

Add Custom Column, 194, 200–201
Append, 213–214
Change PivotTable Data Source, 39
Connection Properties, 84–85
Create Data Type, 203–204
Create PivotTable, 33–36, 90–91, 97, 123
Create Table, 21–22, 240
Custom Column, 193, 228, 240
Data Link Properties, 73–74
Data Source Settings, 170–171
Edit Relationship, 26–27
Existing Connections, 87, 97–98
Extract Steps, 210
Format Cells, 43
Import, 148–149, 228
Import Data, 100, 161–162, 163, 213
Insert Slicers, 54–55
Insert Timelines, 59–61
Manage Measures, 118–119
Manage Relationships, 95–96
Measure, 116–118, 122
Merge, 218–221, 222–223
Merge Columns, 180, 208–209
Navigator, 99–100, 144
Paste Preview, 81–82

Privacy Levels, 241
Properties, 86, 152–153
Replace Values, 179, 182
Report Connections, 59
Slicer Settings, 58, 250
Sort by Column, 111–112
Split by Column Delimiter, 188–189
Table Import Wizard, 71, 73, 76–80
Value Field Settings, 41–42

dimension fields, 249–250
disabling

cross-filter behavior for slicers, 250
privacy settings, 261
relationship detection, 261–262

DISTINCTCOUNT function, 129
DIVIDE function, 128
dot (.) operator, 205
Drill Down action, 156
Duplicate Column action, 155

E
Edit button, 87
Edit Relationship dialog box, 26–27
editing

calculated measures, 118–119
data connections, 86–87

empty strings, filling in, 179
Excel (Microsoft)

creating custom functions to merge data from
multiple files, 229–236

getting data from workbooks, 160–161
limits of, 7–11
loading data from external files, 76–78
upgrading to 64-bit, 251

Excel tables (Microsoft)
about, 11–12
adding to data model, 22–24
compared with views, 246
importing, 67–68
linking to Power Pivot, 20–29
preparing, 21–22

268 Microsoft Excel Power Pivot & Power Query For Dummies

Excelerator BI, 138
Existing Connections dialog box, 87, 97–98
external data, using with Power Pivot, 63–87
external data tables, filling Internal Data Model

with multiple, 98–101
Extract, Transform, Load (ETL), 143
Extract command, 185
Extract Steps dialog box, 210
extracting left, right, and middle values, 184–187

F
fields

about, 12
adding conditional logic to custom, 199–201
applying numeric formats to, 42–43
calculated, 250–251
concatenating, 179–181
concatenating with custom, 195–196
creating calculated, 104–105
creating custom, 193–201
customizing names, 41–42
dimension, 249–250
enhancing Power Pivot data with calculated,

103–108
filling in blank, 178
formatting calculated, 105–106
hiding calculated, from end users, 107–108
limiting number of in data model tables, 246
with many unique values, 248
mismatched labels, 215
pivoting, 189–193
referencing from other pivot tables, 113–115
referencing in other calculations, 106–107
selecting in queries, 255–256
splitting using character markers, 187–189
unpivoting, 189–193
using functions in custom, 197–199
utilizing DAX to create calculated, 108–115

files, importing data from, 160–165
Fill action, 156
filling in

blank fields, 178
empty strings, 179

filling Internal Data Model with multiple external
data tables, 98–101

filter area, of pivot tables, 32–33
filter context

about, 133–135
CALCULATE function, 135–137
FILTER function, 137–139

Filter fields, 52
FILTER function, 137–139
finding and replacing specific text, 181–183
flat files, loading data from, 75–82
folders, getting data from, 164–165
Format Cells dialog box, 43
FORMAT() function, 110–111
Format Slicer pane, 57
formatting calculated columns, 105–106
Formula bar, 108–109
formulas, adding to Power Pivot, 103–120
Full Outer join, 216
functions

aggregate, 128–129
AVERAGE, 43, 110, 128–129
AVERAGEX, 131–132
CALCULATE, 135–137
COUNT, 43, 110, 129
Count Numbers, 43
COUNTA, 129
COUNTBLANK, 129
COUNTROWS, 129
cube, 119–120
DISTINCTCOUNT, 129
DIVIDE, 128
FILTER, 137–139
FORMAT(), 110–111
IF, 110, 126–128, 199–201
IFERROR, 110, 128
ISBLANK, 127
iterator, 129–132
LEFT, 110, 184–187
MAX, 43, 110, 128–129
MAXX, 131–132
MID, 110, 184–187
MIN, 43, 110, 128–129

Index 269

MINX, 131–132
MONTH, 110
nesting, 115
Product, 43
RELATED, 114–115
Replace Values, 182
RIGHT, 110, 184–187
StdDev, 43
StdDevP, 43
SUM, 43, 109–110, 128–129
SUMX, 131–132
SWITCH, 127–128
TRIM, 184
using with custom columns, 197–199
Var, 43
VarP, 43
VLOOKUP, 17, 28
YEAR, 110

functions, custom
about, 225
creating in Power Query, 225–229
creating parameter queries, 236–242
creating to merge data from multiple Excel files,

229–236
Power Query, 225–242
using in Power Query, 225–229

Fuzzy Match feature, 221–223

G
generating

base queries, 212–213, 238–239
calculated columns, 104–105
calculated measures, 116–118
custom columns, 193–201
custom functions in Power Query, 225–229
custom functions to merge data from multiple

Excel files, 229–236
DAX-driven calculated columns, 110–111
parameter queries, 236–242
pivot tables, 33–39
pivot tables using Internal Data Model, 97–98
reference tables, 257–258
relationships between Power Pivot tables, 24–26

slicers, 249–250
standard slicers, 54–56
timeline slicers, 59–61

Group By action, 156
Group By feature (Power Query), 201–202
grouping data, 201–202
groups, organizing queries in, 254–255

H
hiding

calculated columns from end users, 107–108
data items, 47–49
items without data, 49–51

I
icons, explained, 3–4
identifying DAX functions safe for calculated

columns, 108–110
IF function, 110, 126–128, 199–201
IFERROR function, 110, 128
Import Data dialog box, 100, 161–162, 163, 213
Import dialog box, 148–149, 228
importing

data from database systems, 165–169
data from files, 160–165
tables, 67–68
views, 67–68

improving
performance, 261
Power Pivot data with calculated columns,

103–108
Inner join, 216
Insert Slicers dialog box, 54–55
Insert Timelines dialog box, 59–61
Internal Data Model (Power Pivot)

about, 18–19, 89
creating new pivot tables using, 97–98
directly feeding, 89–95
filling with multiple external data tables, 98–101
limitations of Power Pivot-driven pivot tables, 94
managing queries and connections, 96
managing relationships in, 95–96

270 Microsoft Excel Power Pivot & Power Query For Dummies

Internet resources
BI Blog, 138
Cheat Sheet, 4
Excelerator BI, 138
P3 Adaptive, 138
RADACAD, 138
SQLB, 138

ISBLANK function, 127
iterator function, 129–132

J
joins

defined, 25
Power Query, 216–217

K
Keep Bottom Rows action, 158
Keep Duplicates action, 158
Keep Errors action, 158
Keep Range of Rows action, 158
Keep Top Rows action, 158

L
layout, for pivot tables, 40–41
Left Anti join, 216
LEFT function, 110, 184–187
Left Outer join, 216
left values, extracting, 184–187
linking Excel tables to Power Pivot,

20–29
load behavior, setting default, 259
loading data

from Clipboard, 81–82
from external Excel files, 76–78
from flat files, 75–82
from Microsoft Access databases, 70–72
from other data sources, 82–83
from other relational database systems,

72–75
from relational databases, 64–75

from SQL Server, 64–70
from text files, 78–80

M
Manage Measures dialog box, 118–119
Manage Relationships dialog box, 95–96
managing

connections, 96
data source settings, 170–171
existing queries, 153–154
external data connections, 83–87
multiple pivot tables with one slicer, 58–59
queries, 96
relationships, 26–27
relationships in Internal Data Model, 95–96

many-to-many relationship, 15
mathematical operators, 126
MAX function, 43, 110, 128–129
MAXX function, 131–132
Measure dialog box, 116–118, 122
Merge Column action, 156
Merge Columns command, 179–180,

195–196
Merge Columns dialog box, 180, 208–209
Merge dialog box, 218–221, 222–223
Merge feature

about, 216
merging queries, 217–221
Power Query joins, 216–217

Merge Queries action, 158
merging queries, 217–221
Microsoft Access databases, 70–72, 168–169
Microsoft Analysis Services, 82
Microsoft Analytics Platform System, 82
Microsoft Excel

creating custom functions to merge data from
multiple files, 229–236

getting data from workbooks, 160–161
limits of, 7–11
loading data from external files, 76–78
upgrading to 64-bit, 251

Index 271

Microsoft Excel tables
about, 11–12
adding to data model, 22–24
compared with views, 246
importing, 67–68
linking to Power Pivot, 20–29
preparing, 21–22

Microsoft SQL Azure, 82
MID function, 110, 184–187
middle values, extracting, 184–187
MIN function, 43, 110, 128–129
MINX function, 131–132
modifying

case, 181
pivot table layouts, 40–41
pivot tables, 36–37
summary calculations, 43–44

MONTH function, 110
Move action, 156
multi-level relationships, 246–247

N
Navigator dialog box, 99–100, 144
nesting funtions, 115
nonstandard databases, 167
NOT operator, 126
null, 178
null values, replacing, 178–179
numeric formats, applying to data fields, 42–43

O
ODBC connections, 167
OLAP databases, 165
On the Web icon, 4
one-to-many relationship, 15
one-to-one relationship, 15
Open button, 87
operators, DAX, 125–126
OR operator, 126

organizing queries in groups, 254–255
Other Feeds data source, 83

P
P3 Adaptive, 138
parameter queries, creating, 236–242
parentheses (()), DAX operators and, 126
Paste Preview dialog box, 81–82
PDF files, getting data from, 163
performance

improving, 261
improving for Power Pivot, 245–251

Pivot Columns command, 192–193
pivot tables

creating using Internal Data Model, 97–98
limitations of Power Pivot-driven, 94
month sorting in Power-Pivot-driven, 111–112
referencing fields from other, 113–115

pivoting fields, 189–193
placing slicers, 56–57
Power Pivot

about, 17, 63
adding Excel tables to data model, 22–24
adding formulas to, 103–120
compatibility, 20
creating relationships between tables, 24–26
editing data connection, 86–87
enhancing data with calculated columns,

103–108
importing tables vs. importing views, 67–68
Internal Data Model, 18–19
linking Excel tables to, 20–28
loading data from Clipboard, 81–82
loading data from external Excel files, 76–78
loading data from flat files, 75–82
loading data from Microsoft Access databases,

70–72
loading data from other data sources, 82–83
loading data from other relational database

systems, 72–75

272 Microsoft Excel Power Pivot & Power Query For Dummies

Power Pivot (continued)
loading data from relational databases, 64–75
loading data from SQL Server, 64–70
loading data from text files, 78–80
managing existing relationships, 26–27
managing external data connections, 83–87
manually refreshing data, 83–84
Power Pivot tab, 19
preparing Excel tables, 21–22
preventing Refresh All, 85–86
refreshing external data connections, 83–87
setting up automatic refreshing, 84–85
tips for improving performance of, 245–251
using data model in reporting, 27–28
using external data with, 63–87

Power Pivot Ribbon interface, 18
Power Pivot tab, 19
Power Pivot tables

about, 29–30
adding report filters, 37–38
applying numeric formats to data fields, 42–43
areas of, 30–33
changing, 36–37
changing layout, 40–41
changing summary calculations, 43–44
column area, 31–32
controlling multiples with one slicer, 58–59
creating, 33–39
creating relationships between, 24–26
creating standard slicers, 54–56
creating timeline slicers, 59–61
customizing field names, 41–42
customizing reports, 40–52
customizing slicers, 56–58
data item columns, 57–58
filter area, 32–33
hiding data items, 47–49
hiding items without data, 49–51
miscellaneous slicer settings, 58
placement of slicers, 56–57
rearranging, 36–37
refreshing, 38–39

row area, 31
showing data items, 47–49
showing items without data, 49–51
size of slicers, 56–57
slicers, 52–54
sorting, 51–52
suppressing subtotals, 44–47
values area, 30–31

Power Query
about, 143–144
Advanced Editor, 151
column-level actions, 155–157
connection types, 159–174
custom functions, 225–242
data profiling with, 171–174
joins, 216–217
managing existing queries, 153–154
query steps, 150–152
refreshing data, 152–153
starting queries, 144–150
table actions, 157–158
tips for working with, 253–262

Power Query Editor, 150–152, 164–165
preparing

Excel tables, 21–22
for parameter queries, 236–237

presentation, separation of data and, 10–11
preventing

automatic data type changes, 259–260
Refresh All command, 85–86

primary key, 93
Privacy Levels dialog box, 241
privacy settings, disabling, 261
Product function, 43
Properties dialog box, 86, 152–153

Q
queries

about, 13, 207
Append feature, 211–215
appending data, 213–215

Index 273

creating base, 212–213
Fuzzy Match feature, 221–223
managing, 96
managing existing, 153–154
Merge feature, 216–221
merging, 217–221
mismatched column labels, 215
organizing in groups, 254–255
Power Query joins, 216–217
renaming steps, 256–257
reusing steps, 208–211
selecting columns in, 255–256
starting, 144–150
steps for, 150–152
viewing dependencies, 258

Queries & Connections command, 84, 86
Queries & Connections pane, 153–154, 253–254
query context, 134
quotation marks (““), 178

R
RADACAD, 138
raw information. See data
rearranging pivot tables, 36–37
records

about, 12
limiting number of in data model tables, 246
removing duplicate, 176–178

reference tables, creating, 257–258
referencing

calculated columns in other calculations,
106–107

fields from other pivot tables, 113–115
Refresh All command, 85–86
Refresh command, 83–84
refreshing

external data connections, 83–87
pivot tables, 38–39
Power Query data, 152–153

RELATED function, 114–115
relational database systems

about, 9
loading data from other, 72–75

relational databases, 64–75, 165
relationships

about, 13–15
creating between Power Pivot tables, 24–26
disabling detection, 261–262
managing, 26–27
managing in Internal Data Model, 95–96
multi-level, 246–247

Remember icon, 4
Remove action, 155
Remove Alternate Rows action, 158
Remove Bottom Rows action, 158
Remove Duplicates action, 155, 158
Remove Duplicates command, 177
Remove Errors action, 155, 158
Remove Other Columns action, 155
Remove Top Rows action, 158
Rename action, 156
renaming query steps, 256–257
Replace Errors action, 156
Replace Values action, 156
Replace Values dialog box, 179, 182
Replace Values function, 182
replacing null values, 178–179
Report Connections dialog box, 59
Report data source, 83
report filters, adding, 37–38
reports

limiting slicers in, 248–249
pivot table, 40–52
using Power Pivot data model in, 27–28

resources, Internet
BI Blog, 138
Cheat Sheet, 4
Excelerator BI, 138
P3 Adaptive, 138
RADACAD, 138
SQLB, 138

reusing query steps, 208–211
Right Anti join, 216

274 Microsoft Excel Power Pivot & Power Query For Dummies

RIGHT function, 110, 184–187
Right Outer join, 216
right values, extracting, 184–187
row area, of pivot tables, 31
row context, 129–132
rows

about, 12
limiting number of in data model tables, 246
removing duplicate, 176–178

S
scalability, as a benefit of databases, 8–9
selecting columns in queries, 255–256
self-service BI, demand for, 1
setting(s)

data source, 170–171
default load behavior, 259
privacy, 261

setup, of automatic refreshing, 84–85
showing

data items, 47–49
items without data, 49–51

64-bit Excel, upgrading to, 251
sizing slicers, 56–57
Slicer Settings dialog box, 58, 250
slicers

about, 52–54
controlling multiple pivot tables with one, 58–59
creating, 249–250
creating standard, 54–56
creating timeline, 59–61
customizing, 56–58
disabling cross-filter behavior for, 250
limiting in reports, 248–249

snowflake schema, 247
Sort by Column dialog box, 111–112
sorting pivot tables, 51–52
Split by Column Delimiter dialog box, 188–189
Split Column action, 156
splitting columns using character markers,

187–189

SQL Server, loading data from, 64–70
SQLB, 138
starting queries, 144–150
StdDev function, 43
StdDevP function, 43
subtotals, suppressing, 44–47
SUM function, 43, 109–110, 128–129
summary calculations, changing, 43–44
SUMX function, 131–132
suppressing subtotals, 44–47
SWITCH function, 127–128

T
table actions, 157–158
Table Import Wizard, 65–80
Table Import Wizard dialog box, 71, 73, 76–80
tables (Excel)

about, 11–12
adding to data model, 22–24
compared with views, 246
importing, 67–68
linking to Power Pivot, 20–29
preparing, 21–22

tables (Power Pivot)
about, 29–30
adding report filters, 37–38
applying numeric formats to data fields, 42–43
areas of, 30–33
changing, 36–37
changing layout, 40–41
changing summary calculations, 43–44
column area, 31–32
controlling multiples with one slicer, 58–59
creating, 33–39
creating relationships between, 24–26
creating standard slicers, 54–56
creating timeline slicers, 59–61
customizing field names, 41–42
customizing reports, 40–52
customizing slicers, 56–58
data item columns, 57–58

Index 275

filter area, 32–33
hiding data items, 47–49
hiding items without data, 49–51
miscellaneous slicer settings, 58
placement of slicers, 56–57
rearranging, 36–37
refreshing, 38–39
row area, 31
showing data items, 47–49
showing items without data, 49–51
size of slicers, 56–57
slicers, 52–54
sorting, 51–52
suppressing subtotals, 44–47
values area, 30–31

target field, 51
Technical Stuff icon, 3
text

cleaning, 183–184
finding and replacing specific, 181–183
trimming, 183–184

text files
getting data from, 161–162
loading data from, 78–80

timeline slicers, 59–61
Tip icon, 3
Transform action, 155
transparency, of analytical processes, 9
Trim command, 183–184
TRIM function, 184
trimming text, 183–184

U
Unpivot Columns command, 190–191
Unpivot Other Columns action, 156
Unpivot Other Columns command,

191–192

Unpivot Selected Columns action, 156
unpivoting fields, 189–193
upgrading, to 64-bit Excel, 251
Use First Row as Headers action, 158

V
Value Field Settings dialog box, 41–42
values

about, 12
columns with many unique, 248

values area, of pivot tables, 30–31
Var function, 43
VarP function, 43
viewing query dependencies, 258
views

compared with tables, 246
importing, 67–68

VLOOKUP function, 17, 28

W
Warning icon, 3
Webb, Chris (blogger), 138
websites

BI Blog, 138
Cheat Sheet, 4
Excelerator BI, 138
P3 Adaptive, 138
RADACAD, 138
SQLB, 138

X
X-functions, 129–132

Y
YEAR function, 110

About the Author
Michael Alexander is a senior consultant at Slalom Consulting with more than 15
years of experience in data reporting management. He is the author of more than
a dozen books on business analysis using Microsoft Excel and Microsoft Access.
He has been named Microsoft Excel MVP for his contributions to the Excel
community.

Author’s Acknowledgments
My deepest thanks go to the professionals at John Wiley & Sons, Inc. for all the
hours of work put into bringing this book to life. Thanks also to Elizabeth Kuball
and Guy Hart-Davis for suggesting numerous improvements to the examples and
text in this book. Finally, a special thank-you goes out to my family, for putting
up with all the time I spent locked away on this project.

Publisher’s Acknowledgments

Associate Editor: Elizabeth Stilwell

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Guy Hart-Davis

Proofreader: Debbye Butler

Production Editor: Tamilmani Varadharaj

Cover Photos: © marco302/Getty Images

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Supercharged Reporting with Power Pivot
	Chapter 1 Thinking Like a Database
	Exploring the Limits of Excel and How Databases Help
	Scalability
	Transparency of analytical processes
	Separation of data and presentation

	Getting to Know Database Terminology
	Databases
	Tables
	Records, fields, and values
	Queries

	Understanding Relationships

	Chapter 2 Introducing Power Pivot
	Understanding the Power Pivot Internal Data Model
	Linking Excel Tables to Power Pivot
	Preparing Excel tables
	Adding Excel Tables to the data model
	Creating relationships between Power Pivot tables
	Managing existing relationships
	Using the Power Pivot data model in reporting

	Chapter 3 The Pivotal Pivot Table
	Introducing the Pivot Table
	Defining the Four Areas of a Pivot Table
	Values area
	Row area
	Column area
	Filter area

	Creating Your First Pivot Table
	Changing and rearranging a pivot table
	Adding a report filter
	Keeping the pivot table fresh

	Customizing Pivot Table Reports
	Changing the pivot table layout
	Customizing field names
	Applying numeric formats to data fields
	Changing summary calculations
	Suppressing subtotals
	Showing and hiding data items
	Hiding or showing items without data
	Sorting the pivot table

	Understanding Slicers
	Creating a Standard Slicer
	Getting Fancy with Slicer Customizations
	Size and placement
	Data item columns
	Miscellaneous slicer settings

	Controlling Multiple Pivot Tables with One Slicer
	Creating a Timeline Slicer

	Chapter 4 Using External Data with Power Pivot
	Loading Data from Relational Databases
	Loading data from SQL Server
	Loading data from Microsoft Access databases
	Loading data from other relational database systems

	Loading Data from Flat Files
	Loading data from external Excel files
	Loading data from text files
	Loading data from the Clipboard

	Loading Data from Other Data Sources
	Refreshing and Managing External Data Connections
	Manually refreshing Power Pivot data
	Setting up automatic refreshing
	Preventing Refresh All
	Editing the data connection

	Chapter 5 Working Directly with the Internal Data Model
	Directly Feeding the Internal Data Model
	Managing Relationships in the Internal Data Model
	Managing Queries and Connections
	Creating a New Pivot Table Using the Internal Data Model
	Filling the Internal Data Model with Multiple External Data Tables

	Chapter 6 Adding Formulas to Power Pivot
	Enhancing Power Pivot Data with Calculated Columns
	Creating your first calculated column
	Formatting calculated columns
	Referencing calculated columns in other calculations
	Hiding calculated columns from end users

	Utilizing DAX to Create Calculated Columns
	Identifying DAX functions that are safe for calculated columns
	Building DAX-driven calculated columns
	Month sorting in Power Pivot–driven pivot tables
	Referencing fields from other tables
	Nesting functions

	Understanding Calculated Measures
	Creating a calculated measure
	Editing and deleting calculated measures

	Free Your Data with Cube Functions

	Chapter 7 Diving into DAX
	DAX Language Fundamentals
	Using DAX operators
	Applying conditional logic in DAX
	Working with DAX aggregate functions
	Exploring iterator functions and row context

	Understanding Filter Context
	Getting context transitions with the CALCULATE function
	Adding flexibility with the FILTER function

	Part 2 Wrangling Data with Power Query
	Chapter 8 Introducing Power Query
	Power Query Basics
	Starting the query
	Understanding query steps
	Refreshing Power Query data
	Managing existing queries

	Understanding Column-Level Actions
	Understanding Table Actions

	Chapter 9 Power Query Connection Types
	Importing Data from Files
	Getting data from Excel workbooks
	Getting data from CSV and text files
	Getting data from PDF files
	Getting data from folders

	Importing Data from Database Systems
	A connection for every database type
	Getting data from other data systems
	Walk-through: Getting data from a database

	Managing Data Source Settings
	Data Profiling with Power Query
	Data Profiling options
	Data Profiling quick actions

	Chapter 10 Transforming Your Way to Better Data
	Completing Common Transformation Tasks
	Removing duplicate records
	Filling in blank fields
	Concatenating columns
	Changing case
	Finding and replacing specific text
	Trimming and cleaning text
	Extracting the left, right, and middle values
	Splitting columns using character markers
	Pivoting and unpivoting fields

	Creating Custom Columns
	Concatenating with a custom column
	Understanding data type conversions
	Spicing up custom columns with functions
	Adding conditional logic to custom columns

	Grouping and Aggregating Data
	Working with Custom Data Types

	Chapter 11 Making Queries Work Together
	Reusing Query Steps
	Understanding the Append Feature
	Creating the needed base queries
	Appending the data

	Understanding the Merge Feature
	Understanding Power Query joins
	Merging queries

	Understanding Fuzzy Match

	Chapter 12 Extending Power Query with Custom Functions
	Creating and Using a Basic Custom Function
	Creating a Function to Merge Data from Multiple Excel Files
	Creating Parameter Queries
	Preparing for a parameter query
	Creating the base query
	Creating the parameter query

	Part 3 The Part of Tens
	Chapter 13 Ten Ways to Improve Power Pivot Performance
	Limit the Number of Rows and Columns in Your Data Model Tables
	Use Views Instead of Tables
	Avoid Multi-Level Relationships
	Let the Back-End Database Servers Do the Crunching
	Beware of Columns with Many Unique Values
	Limit the Number of Slicers in a Report
	Create Slicers Only on Dimension Fields
	Disable the Cross-Filter Behavior for Certain Slicers
	Use Calculated Measures Instead of Calculated Columns
	Upgrade to 64-Bit Excel

	Chapter 14 Ten Tips for Working with Power Query
	Getting Quick Information from the Queries & Connections Pane
	Organizing Queries in Groups
	Selecting Columns in Queries Faster
	Renaming Query Steps
	Quickly Creating Reference Tables
	Viewing Query Dependencies
	Setting a Default Load Behavior
	Preventing Automatic Data Type Changes
	Disabling Privacy Settings to Improve Performance
	Disabling Relationship Detection

	Index
	EULA

